General topics

Output handler

class postprocess.output_handler.OutputHandler(modelSpace=None, outputStyle=<postprocess.output_styles.OutputStyle object>)

Bases: object

Object that handles the ouput (graphics, etc.)

Variables
  • modelSpace – FE model data.

  • outputStyle – style of the output.

displayBeamResult(attributeName, itemToDisp, beamSetDispRes, setToDisplay=None, caption=None, fileName=None, defFScale=0.0, defaultDirection='J', rgMinMax=None)

display results for beam elements from a limit state verification file.

:param attributeName:attribute name(e.g. ‘ULS_normalStressesResistance’) :param itemToDisp: result item to display (e.g. ‘N’, ‘My’, …) :param beamSetDispRes:set of linear elements to which display results :param setToDisplay: set of elements (any type) to be depicted

(defaults to None, in that case only elements in beamSetDispRes are displayed)

Parameters
  • caption – caption to display (defaults to ‘attributeName + itemToDisp’)

  • fileName – file to dump the display (defaults to screen display)

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • defaultDirection – default direction of the diagram (J: element local j vector or K: element local K vector).

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the scalar field (if any) to be represented. All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

displayBlocks(setToDisplay=None, caption=None, displayLocalAxes=True, fileName=None, displayCellTypes=['lines', 'faces', 'bodies'])
Display the blocks (points, lines, surfaces and volumes)

of the set.

Parameters
  • setToDisplay – set to display.

  • caption – title of the graphic.

  • displayLocalAxes – if true, show also local axes of entities.

  • fileName

    name of the file to plot the graphic. Defaults to

    None, in that case an screen display is generated

    param displayCellTypes

    types of cell to be displayed.

displayDiagram(attributeName, component, setToDispRes, setToDisplay, caption, unitDescription, scaleFactor=1.0, fileName=None, defFScale=0.0, orientScbar=1, titleScbar=None, defaultDirection='J')

Auxiliary function to display results on linear elements.

Parameters
  • attributeName – attribute name(e.g. ‘ULS_normalStressesResistance’)

  • component – result item to display (e.g. ‘N’, ‘My’, …)

  • setToDispRes – set of linear elements to which display results

  • setToDisplay – set of elements (any type) to be depicted as context.

  • scaleFactor – factor of scale to apply to the auto-scaled display (defaults to 1).

  • caption – caption to display

  • unitDescription – description of the units.

  • fileName – file to dump the display

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • orientScbar – orientation of the scalar bar (defaults to 1-horiz)

  • titleScbar – title for the scalar bar (defaults to None)

  • defaultDirection – default direction of the diagram (J: element local j vector or K: element local K vector).

displayDispRot(itemToDisp, setToDisplay=None, fileName=None, defFScale=0.0, rgMinMax=None, captionText=None)
displays the component of the displacement or rotations in the

set of entities.

param itemToDisp

component of the displacement (‘uX’, ‘uY’ or ‘uZ’) or the rotation (‘rotX’, rotY’, ‘rotZ’) to be depicted

param setToDisplay

set of entities to be represented.

param fileName

name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

param defFScale

factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

param rgMinMax

range (vmin,vmax) with the maximum and minimum values of the field to be represented (in units of calculation, not units of display). All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

Parameters

captionText – caption text. Defaults to None, in which case the default caption text (internal force + units + set name) is created

displayEigenResult(eigenMode, setToDisplay=None, accelMode=None, caption='', fileName=None, defFScale=0.0)

Display the deformed shape and/or the equivalent static forces associated with the eigenvibration mode passed as parameter.

Parameters
  • eigenMode – eigenvibration mode to be displayed

  • setToDisplay – set of elements to be displayed (defaults to total set)

  • accelMode – acceleration associated with the eigen mode depicted, only used if the equivalent static loads are to be displayed.

  • caption – text to display in the graphic

  • fileName – full name of the graphic file to generate. Defaults to ` None`, in this case it returns a console output graphic.

  • defFScale – factor to apply to deformed shape so that the displayed position of each node equals to the initial position plus its eigenVector multiplied by this factor. (Defaults to 0.0 i.e. display of initial/undeformed shape)

displayEigenvectors(mode=1, setToDisplay=None, caption=None, fileName=None, defFScale=0.0, showDispComponents=True, showRotComponents=True)

Displays the computed eigenvectors on the set argument.

Parameters
  • mode – mode to which the eigenvectors belong.

  • setToDisplay – set of elements to be displayed (defaults to total set)

  • caption – text to display in the graphic. Defaults to ` None` in this case the text is the load case description and the units of the loads.

  • fileName – full name of the graphic file to generate. Defaults to ` None`, in this case it returns a console output graphic.,

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • showDispComponents – if false, don’t show the displacement components of the eigenvectors.

  • showRotComponents – if false, don’t show the rotational components of the eigenvectors.

displayEigenvectorsOnSets(eigenMode, setsToDisplay, fileName=None, defFScale=0.0)

displays the reactions as vector on affected nodes

Parameters
  • eigenMode – mode to which the eigenvectors belong.

  • setsToDisplay – sets to display on batch mode.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

displayElementProp(propName: str, unitDescription='', setToDisplay=None, fileName=None, defFScale=0.0, rgMinMax=None, captionText=None)

displays the given property component of internal forces in the set of entities as a scalar field (i.e. appropriated for 2D elements; shells…).

Parameters
  • propName – string that identifies the property to display.

  • setToDisplay – set of entities to be represented (defaults to all entities)

  • unitDescription – description of the displayed units.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the field to be represented (in units of calculation, not units of display). All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

  • captionText – caption text. Defaults to None, in which case the default caption text (property name + set name) is created.

displayElementValueDiagram(itemToDisp, setToDisplay=None, caption=None, fileName=None, defFScale=0.0)
displays the a displacement (uX,uY,…) or a property defined in

nodes as a diagram over lines.

Parameters
  • itemToDisp – item to display (uX,uY,…).

  • setToDisplay – set of entities (elements of type beam) to be represented

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

displayFEMesh(setsToDisplay=None, caption=None, fileName=None, defFScale=0.0)

Display the mesh (nodes, elements and constraints) of the set.

Parameters
  • setsToDisplay – list of sets to display (defaults to TotalSet).

  • caption – title of the graphic.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

displayField(limitStateLabel, section, argument, component, setToDisplay, fileName, defFScale=0.0, rgMinMax=None)
Display a field defined over bi-dimensional elements in its two

directions.

Parameters
  • limitStateLabel – label that identifies the limit state.

  • section – section to display (1 or 2 or None if the value is not section dependent).

  • argument – name of the control var to represent.

  • component – component of the control var to represent.

  • setToDisplay – represent the field over those elements.

  • fileName – file name to store the image. If none -> window on screen.

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the scalar field (if any) to be represented (in units of calculation, not units of display). All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

displayFieldDirs1and2(limitStateLabel, argument, component, setToDisplay, fileName, defFScale=0.0, rgMinMax=None)
Display a field defined over bi-dimensional elements in its two

directions.

Parameters
  • limitStateLabel – label that identifies the limit state.

  • argument – name of the control var to represent.

  • component – component of the control var to represent.

  • setToDisplay – represent the field over those elements.

  • fileName – file name to store the image. If none -> window on screen.

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the scalar field (if any) to be represented (in units of calculation, not units of display). All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

displayIntForc(itemToDisp, setToDisplay=None, fileName=None, defFScale=0.0, rgMinMax=None, captionText=None)

displays the component of internal forces in the set of entities as a scalar field (i.e. appropriated for 2D elements; shells…).

Parameters
  • itemToDisp – component of the internal forces (‘N1’, ‘N2’, ‘N12’, ‘M1’, ‘M2’, ‘M12’, ‘Q1’, ‘Q2’) to be depicted

  • setToDisplay – set of entities to be represented (default to all entities)

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the field to be represented (in units of calculation, not units of display). All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

  • captionText – caption text. Defaults to None, in which case the default caption text (internal force + units + set name) is created

displayIntForcDiag(itemToDisp, setToDisplay=None, fileName=None, defFScale=0.0, overrideScaleFactor=None, orientScbar=1, titleScbar=None, defaultDirection='J', captionText=None)
displays the component of internal forces in the set of entities as

a diagram over lines (i.e. appropriated for beam elements).

Parameters
  • itemToDisp – component of the internal forces (‘N’, ‘Qy’ (or ‘Vy’), ‘Qz’ (or ‘Vz’), ‘My’, ‘Mz’, ‘T’) to be depicted

  • setToDisplay – set of entities (elements of type beam) to be represented

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • overrideScaleFactor – if not none, override the scale factor in outputStyle.

  • orientScbar – orientation of the scalar bar (defaults to 1-horiz)

  • titleScbar – title for the scalar bar (defaults to None)

  • defaultDirection – default direction of the diagram (J: element local j vector or K: element local K vector).

  • captionText – caption text. Defaults to None, in which case the default caption text (internal force + units + set name) is created

displayLoadVectors(setToDisplay=None, caption=None, fileName=None, defFScale=0.0)

Displays load vectors on the set argument.

Parameters
  • setToDisplay – set of elements to be displayed (defaults to total set)

  • caption – text to display in the graphic. Defaults to ` None` in this case the text is the load case description and the units of the loads.

  • fileName – full name of the graphic file to generate. Defaults to ` None`, in this case it returns a console output graphic.,

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

displayLoads(setToDisplay=None, elLoadComp='xyzComponents', fUnitConv=1, caption=None, fileName=None, defFScale=0.0, scaleConstr=0.2)
Display the loads applied on beam elements and nodes for the domain

current load case

Parameters
  • setToDisplay – set of beam elements to be represented (defaults to TotalSet)

  • elLoadComp – component of the elemental loads to be depicted [available components: ‘xyzComponents’ (default), ‘axialComponent’, ‘transComponent’, ‘transYComponent’, ‘transZComponent’, ‘epsilon_xx’, ‘epsilon_yy’, ‘epsilon_zz’, ‘epsilon_xy’, ‘epsilon_xz’, ‘epsilon_yz’]

  • fUnitConv – factor of conversion to be applied to the results (defaults to 1)

  • caption – caption for the graphic

  • fileName – name of the file to plot the graphic. Defaults to None in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • scaleConstr – scale of SPConstraints symbols (defaults to 0.2)

displayLocalAxes(setToDisplay=None, caption=None, fileName=None, defFScale=0.0)

Display the local axes of the elements contained in the set.

Parameters
  • setToDisplay – set to display.

  • caption – title of the graphic.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

displayNodeValueDiagram(itemToDisp, setToDisplay=None, caption=None, fileName=None, defFScale=0.0, defaultDirection='J', defaultValue=0.0, rgMinMax=None)
displays the a displacement (uX,uY,…) or a property defined in

nodes as a diagram over lines.

Parameters
  • itemToDisp – item to display (uX,uY,…).

  • setToDisplay – set of entities (elements of type beam) to be represented

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • defaultDirection – default direction of the diagram (J: element local j vector or K: element local K vector).

  • defaultValue – value to use then the node does not have the requested property.

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the scalar field (if any) to be represented. All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

displayPropertyComponentAtNodes(propToDisp, component, fUnitConv, unitDescription, captionText, setToDisplay, fileName=None, defFScale=0.0, rgMinMax=None)

displays the scalar property defined at the nodes of the set.

Parameters
  • propeToDisp – scalar property defined at nodes.

  • component – component of the control var to represent.

  • fUnitConv – conversion factor for units

  • unitDescription – unit(s) symbol(s)

  • captionText – caption text.

  • setToDisplay – set of entities to be represented.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the field to be represented (in units of calculation, not units of display). All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

displayReactions(setToDisplay=None, fileName=None, defFScale=0.0, inclInertia=False, reactionCheckTolerance=1e-07, captionText=None)

Display reactions.

Parameters
  • setToDisplay – set of entities to be represented.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • inclInertia – include inertia effects (defaults to false).

  • reactionCheckTolerance – relative tolerance when checking reaction values.

  • captionText – caption text. Defaults to None, in which case the default caption text (internal force + units + set name) is created

displayReactionsOnSets(setsToDisplayReactions, fileName=None, defFScale=0.0, inclInertia=False, reactionCheckTolerance=1e-07)

displays the reactions as vector on affected nodes

Parameters
  • setsToDisplayReactions – ordered list of sets of nodes to display reactions on them.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • inclInertia – include inertia effects (defaults to false).

  • reactionCheckTolerance – relative tolerance when checking reaction values.

displayScalarPropertyAtNodes(propToDisp, fUnitConv, unitDescription, captionText, setToDisplay, fileName=None, defFScale=0.0, rgMinMax=None)

displays the scalar property defined at the nodes of the set.

Parameters
  • propeToDisp – scalar property defined at nodes.

  • fUnitConv – conversion factor for units

  • unitDescription – unit(s) symbol(s)

  • captionText – caption text.

  • setToDisplay – set of entities to be represented.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the field to be represented (in units of calculation, not units of display). All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

displayState(itemToDisp, setToDisplay=None, fileName=None, defFScale=0.0, rgMinMax=None)

displays the strains on the elements.

Parameters
  • itemToDisp – component of the state vector as defined in DruckerPrager.cpp (Invariant_1, norm_eta, Invariant_ep, norm_dev_ep, norm_ep)

  • setToDisplay – set of entities to be represented.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the field to be represented (in units of calculation, not units of display). All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

displayStrains(itemToDisp, setToDisplay=None, fileName=None, defFScale=0.0, rgMinMax=None, captionText=None, transformToLocalCoord=False)

displays the strains on the elements.

Parameters
  • itemToDisp – component of the stress (‘eps_11’, ‘eps_22’…)

  • setToDisplay – set of entities to be represented.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the field to be represented (in units of calculation, not units of display). All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

  • captionText – caption text. Defaults to None, in which case the default caption text (internal force + units + set name) is created.

  • transformToLocalCoord – if true (and appropriate), express the obtained result in local coordinates.

displayStresses(itemToDisp, setToDisplay=None, fileName=None, defFScale=0.0, rgMinMax=None, captionText=None, transformToLocalCoord=False)

display the stresses on the elements.

Parameters
  • itemToDisp – component of the stress (‘sigma_11’, ‘sigma_22’…)

  • setToDisplay – set of entities to be represented.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the field to be represented (in units of calculation, not units of display). All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

  • captionText – caption text. Defaults to None, in which case the default caption text (internal force + units + set name) is created.

  • transformToLocalCoord – if true (and appropriate), express the obtained result in local coordinates.

displayStrongWeakAxis(setToDisplay=None, caption=None, fileName=None, defFScale=0.0)

Display the local axes of the elements contained in the set.

Parameters
  • setToDisplay – set to display.

  • caption – title of the graphic.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

displayVonMisesStresses(vMisesCode='von_mises_stress', setToDisplay=None, fileName=None, defFScale=0.0, rgMinMax=None, captionText=None)

display the stresses on the elements.

Parameters
  • vMisesCode – string that will be passed to the element getValues method to retrieve the Von Mises stress. This may vary depending on the element type.

  • setToDisplay – set of entities to be represented.

  • fileName – name of the file to plot the graphic. Defaults to None, in that case an screen display is generated

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • rgMinMax – range (vmin,vmax) with the maximum and minimum values of the field to be represented (in units of calculation, not units of display). All the values less than vmin are displayed in blue and those greater than vmax in red (defaults to None)

  • captionText – caption text. Defaults to None, in which case the default caption text (internal force + units + set name) is created.

extractEigenvectorComponents(mode=1, setToDisplay=None, defFScale=0.0, extractDispComponents=True, extractRotComponents=True)

Displays the computed eigenvectors on the set argument.

Parameters
  • mode – mode to which the eigenvectors belong.

  • setToDisplay – set of elements to be displayed (defaults to total set)

  • defFScale – factor to apply to current displacement of nodes so that the display position of each node equals to the initial position plus its displacement multiplied by this factor. (Defaults to 0.0, i.e. display of initial/undeformed shape)

  • extractDispComponents – if false, don’t extract the displacement components of the eigenvectors.

  • extractRotComponents – if false, don’t extract the rotational components of the eigenvectors.

getActiveLoadPatternCategories()

Return the categories of the load patterns currently active in the domain.

getActiveLoadPatterns()

Return the load patterns currently active in the domain.

getBackgroundColor()

Return the background color for the renderer.

getCameraParameters()

Return a suitable set of camera parameters if not already defined.

getCaptionText(itemToDisp, setToDisplay)

Return the text to use in the image caption.

Parameters
  • itemToDisp – magnitude to display.

  • setToDisplay – name of the set that will be displayed.

getDefaultCameraParameters()

Return the default camera parameters.

getDisplaySettingsBlockTopo()

Return a DisplaySettingsBlockTopo object in order to show the block topology of the model.

getDisplaySettingsFE()

Return a DisplaySettingsFE object in order to show the finite element mesh.

getLineWidth()

Return the width value for the displayed lines.

getLoadRepresentationType()

Return the load representation type according to the categories of the elemental loads of the active load patterns.

getOutputForceUnitSym()
getOutputLengthUnitSym()
getOutputStrainUnitSym()
setBackgroundColor(rgbComponents)

Sets the background color for the renderer.

Parameters

rgbComponents – (red, green, blue) components of the background color.

setCameraParameters(cameraParameters)

Set the camera parameters from the arguments.

Parameters

cameraParameters – CameraParameters object (see vtk_graphic_base) parameters that define the camera.

setLineWidth(lineWidth)

Set the width for the displayed lines.

Parameters

lineWidth – width of the lines in screen units.

postprocess.output_handler.insertGrInTex(texFile, grFileNm, grWdt, capText, labl='')

Include a graphic in a LaTeX file.

Parameters
  • texFile – laTex file where to include the graphics (e.g.:’text/report_loads.tex’)

  • grFileNm – name of the graphic file with path and without extension

  • grWdt – width to be applied to graphics

  • capText – text for the caption

  • labl – label

Output styles

Parameters used in the output routines.

class postprocess.output_styles.OutputStyle(cameraParameters=None, outputUnits=<postprocess.output_units.OutputUnits object>, constraintsScaleFactor=0.4, localAxesVectorScaleFactor=0.25, language=None, backgroundColor=(0.65, 0.65, 0.65), lineWidth=None)

Bases: object

Pararameters used in the output routines (graphics, etc.)

Variables
  • cameraParameters – camera position and orientation.

  • backgroundColor – color for the graphic background.

  • lineWidth – width of the displayed lines in screen units.

  • outputUnits – output units and unit conversion.

  • constraintsScaleFactor – scale factor to display DOF constraints.

  • localAxesVectorScaleFactor – scale factor to display local axes vectors.

  • reactionVectorScaleFactor – scale factor to display reactions.

  • eigenvectorScaleFactor – scale factor to display eigenvectors.

  • equivalentLoadVectorsScaleFactor – factor to apply to the vectors length in the representation of equivalent loads on nodes. If vectorEqLoadScale equals 0, equivalent static loads are not represented. (defaults to 0.0 in which case only deformed shape is depicted)

  • loadVectorsScaleFactor – factor to apply to the vectors length in the representation of element loads (defaults to 1).

  • loadDiagramsScaleFactor – scale factor to apply to the diagram display of element loads (defaults to 1).

  • showLoadsPushing – true if the vector ends in the loaded node (push the node).

  • multByElemSizeLoads – boolean value that must be True if we want to represent the total load on each element (=load multiplied by element size -length, area or volume-) and False if we are going to depict the value of the uniform load per unit area (defaults to False)

  • language – english, spanish, french

  • directionDescr – text list to identify each direction (as [‘vertical reinforcement’, ‘horizontal reinforcement’]).

Iver nodalLoadBarOrientation

orientation of scale bar for nodal loads ‘H’ -> horizontal, ‘RV’ -> right-vertical ‘LV’ left-vertical

getBackgroundColor()

Return the background color for the renderer.

getCaptionTextsDict()

Return a dictionary with the caption texts to use in graphic output.

getDisplacementUnitsDescription()

Return the description for the displacement units.

getDisplacementUnitsScaleFactor()

Return the scale factor for the displacement units.

getForceUnitSymbol()

Return the symbol for the force units.

getForceUnitsDescription()

Return the description for the displacement units.

getForceUnitsScaleFactor()

Return the scale factor for the displacement units.

getLengthUnitSymbol()

Return the symbol for the length units.

getLengthUnitsDescription()

Return the description for the displacement units.

getLengthUnitsScaleFactor()

Return the scale factor for the displacement units.

getLineWidth()

Return the value of the width for the displayed lines.

getMomentUnitSymbol()

Return the symbol for the moment units.

getPressureUnitsDescription()

Return the description for the displacement units.

getPressureUnitsScaleFactor()

Return the scale factor for the displacement units.

getRotationUnitsDescription()

Return the descrioption for the displacement units.

getRotationUnitsScaleFactor()

Return the scale factor for the displacement units.

getStrainUnitsDescription()

Return the description for the strain units.

getStrainUnitsScaleFactor()

Return the scale factor for the strain units.

getUnitParameters(itemToDisp)
Return the pair (scale factor, description) for

the argument parameter.

Parameters

itemToDisp – item to display (uX, uY, N, Mz,…).

setBackgroundColor(rgbComponents)

Sets the background color for the renderer.

Parameters

rgbComponents – (red, green, blue) components of the background color.

setLineWidth(lineWidth)

Set the width for the displayed lines.

Parameters

lineWidth – width of the lines in screen units.

Output units

Utils for units (m, kN, MPa,…) output.

class postprocess.output_units.DisplacementUnits(lengthUnit=<postprocess.output_units.UnitDefinitionPair object>, planeAngleUnit=<postprocess.output_units.UnitDefinitionPair object>)

Bases: object

Units to use for the output of displacement magnitudes

Variables
  • lengthUnit – unit to express lengths.

  • planeAngleUnit – unit to express angles.

getDecoratedDisplSymbol()
getDecoratedRotSymbol()
class postprocess.output_units.DynamicsUnits(forceUnit=<postprocess.output_units.UnitDefinitionPair object>, lengthUnit=<postprocess.output_units.UnitDefinitionPair object>, pressureUnit=<postprocess.output_units.UnitDefinitionPair object>)

Bases: object

Units to use for the output of forces

Variables
  • forceUnit – unit to express forces.

  • lengthUnit – unit to express lengths.

getDecoratedForceUnitsText()
getDecoratedPressureUnitsText()
getForceUnitSymbol()

Return the symbol for the force units.

getLengthUnitSymbol()

Return the symbol for the force units.

getMomentUnitSymbol()

Return the symbol for the moment units.

class postprocess.output_units.LengthUnits(lengthUnit=<postprocess.output_units.UnitDefinitionPair object>)

Bases: object

Units to use for the output of length magnitudes

Variables

lengthUnit – unit to express lengths.

getDecoratedLengthSymbol()
class postprocess.output_units.OutputUnits(displacementUnits=<postprocess.output_units.DisplacementUnits object>, dynamicUnits=<postprocess.output_units.DynamicsUnits object>, lengthUnits=<postprocess.output_units.LengthUnits object>, strainUnits=<postprocess.output_units.StrainUnitless object>)

Bases: object

Units to use in output stuff (graphics, etc.)

Variables
  • displacementUnits – units for the displacements.

  • dynamicUnits – units for the forces and moments.

  • lengthUnits – units for lengths.

  • strainUnits – unit(less) for strain.

getDisplacementUnitsDescription()

Return the description for the displacement units.

getDisplacementUnitsScaleFactor()

Return the scale factor for the displacement units.

getForceUnitSymbol()

Return the symbol for the force unit.

getForceUnitsDescription()

Return the description for the force units.

getForceUnitsScaleFactor()

Return the scale factor for the force units.

getLengthUnitSymbol()

Return the symbol for the length unit.

getLengthUnitsDescription()

Return the description for the displacement units.

getLengthUnitsScaleFactor()

Return the scale factor for the displacement units.

getMomentUnitSymbol()

Return the symbol for the moment unit.

getPressureUnitsDescription()

Return the description for the displacement units.

getPressureUnitsScaleFactor()

Return the scale factor for the displacement units.

getRotationUnitsDescription()

Return the description for the rotation units.

getRotationUnitsScaleFactor()

Return the scale factor for the rotation units.

getStrainUnitsDescription()

Return the description for the strain units.

getStrainUnitsScaleFactor()

Return the scale factor for the strain units.

class postprocess.output_units.StrainUnitless(strainUnitless=<postprocess.output_units.UnitDefinitionPair object>)

Bases: object

Unit(less) to use for the output of strain magnitudes

Variables

strainUnit – unit(less) to express strains.

getDecoratedSymbol()
class postprocess.output_units.UnitDefinitionPair(symbol, scaleFactor, quantity)

Bases: object

Text symbol describing the unit (kN,lb,N,m,mm,in, etc) and scale factor to apply to the results in order to obtain the desired output units (i.e.: N->kN scaleUnitsForce: 1e-3).

Variables
  • symbol – symbol of the unit

  • scaleFactor – scale factor to apply to the results in order to obtain the desired output units (i.e.: N->kN scaleUnitsForce: 1e-3).

getDecoratedSymbol()

Return the symbol between brackets.

Callback controls

postprocess.callback_controls.controTensRecElastico2d()

Code to execute in every commit to check stress criterion (bars in plane problems).

postprocess.callback_controls.controTensRecElastico3d()

Code to execute in every commit to check stress criterion (bars in 3D problems).

postprocess.callback_controls.controlMovModulusUV()
postprocess.callback_controls.controlMovModulusUVW()
postprocess.callback_controls.controlMovU()
postprocess.callback_controls.controlMovUV()
postprocess.callback_controls.controlMovUVW()
postprocess.callback_controls.controlMovV()
postprocess.callback_controls.controlMovW()
postprocess.callback_controls.controlMovs()
postprocess.callback_controls.fnControlMovComponent(recorder, obj, codeComponent, value)
postprocess.callback_controls.fnControlMovUVW(recorder, obj)
postprocess.callback_controls.fnControlMovs(recorder, obj)

Control variables

Classes to store limit state control variables (internal forces, strains, stresses,…) calculated in the analysis. THESE CLASSES ARE INTENDED TO REPLACE THE PROPERTIES DEFINED IN def_vars_control.py WHICH MUST DISSAPEAR.

class postprocess.control_vars.AxialForceControlVars(idSection='nil', combName='nil', N=0.0)

Bases: postprocess.control_vars.CFN

Axial force. Internal forces [N] for a combination.

Variables

idSection – section identifier

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.BiaxialBendingControlVars(idSection='nil', combName='nil', CF=- 1.0, N=0.0, My=0.0, Mz=0.0)

Bases: postprocess.control_vars.UniaxialBendingControlVars

Biaxial bending. Normal stresses limit state variables. [CF,N,My,Mz].

Variables

Mz – bending moment about Z axis (defaults to 0.0)

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.BiaxialBendingStrengthControlVars(idSection='nil', combName='nil', CF=- 1.0, N=0.0, My=0.0, Mz=0.0, Ncrd=0.0, McRdy=0.0, McRdz=0.0, chiLT=1.0, chiN=1.0)

Bases: postprocess.control_vars.BiaxialBendingControlVars

Control variables for biaxial bending normal stresses LS verification on steel-shape elements.

Variables
  • Ncrd – design strength to axial compression

  • McRdy – design moment strength about Y (weak) axis

  • McRdz – design moment strength about Z (strong) axis

  • chiLT – reduction factor for lateral-torsional buckling (defaults to 1)

  • chiN – reduction factor for compressive strength (defaults to 1)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.CFN(combName='nil', CF=- 1.0, N=0.0)

Bases: postprocess.control_vars.N

Uniaxial tension or compression. Normal stresses limit state variables.

Variables

CF – capacity factor (efficiency) (defaults to -1.0; CF<1.0 -> Ok; CF>1.0 -> KO)

getCF()

Return the capacity factor.

class postprocess.control_vars.CFNMy(combName='nil', CF=- 1.0, N=0.0, My=0.0)

Bases: postprocess.control_vars.NMy

Uniaxial bending. Normal stresses limit state variables.

Variables

CF – capacity factor (efficiency) (defaults to -1.0; CF<1.0 -> Ok; CF>1.0 -> KO)

getCF()

Return the capacity factor.

class postprocess.control_vars.CFNMyMz(combName='nil', CF=- 1.0, N=0.0, My=0.0, Mz=0.0)

Bases: postprocess.control_vars.CFNMy

Biaxial bending. Normal stresses limit state variables. [CF,N,My,Mz].

Variables

Mz – bending moment about Z axis (defaults to 0.0)

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.CFVy(combName='nil', CF=- 1.0, Vy=0.0)

Bases: postprocess.control_vars.ShVy

Uniaxial bending. Shear stresses limit state variables.

Variables

CF – capacity factor (efficiency) (defaults to -1.0; CF<1.0 -> Ok; CF>1.0 -> KO)

getCF()

Return the capacity factor.

class postprocess.control_vars.ControlVarsBase(combName='nil')

Bases: object

Base class for the control of variables (internal forces,

strains, stresses,…) calculated in the analysis.

Variables

combName – name of the load combination to deal with

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getCF()

Return the capacity factor.

getDict()

Return a dictionary containing the object data.

getFieldNames(parent='')

Return the object field names.

Parameters

parent – parent object name.

getKnownArguments()

Return a list of the arguments known by this object.

getLaTeXFields(factor=0.001)

Returns a string with the intermediate fields of the LaTeX string.

Parameters

factor – factor for units (default 1e-3 -> kN)

getLaTeXString(eTag, factor=0.001)

Returns a string that we can insert in a LaTeX table.

Parameters
  • eTag – element identifier.

  • factor – factor for units (default 1e-3 -> kN)

getModuleImportString()

Return the string to import the module where the control var is defined.

getStrArguments()

Returns a string for a ‘copy’ (kind of) constructor.

getStrConstructor()

Return a python sentence that can construct a clone of this object: kin of naïve serialization.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

strElementProp(eTag, nmbProp)

Writes a string that will serve to read the element property from a file.

Parameters
  • eTag – element identifier.

  • nmbProp – name of the element property

class postprocess.control_vars.CrackControlBaseVars(combName='nil', CF=- 1.0, N=0.0, My=0.0, Mz=0.0, steelStress=0.0)

Bases: postprocess.control_vars.CFNMyMz

Biaxial bending. Cracking serviceability limit state variables.

Variables

steelStress – maximum stress in the reinforcement bars

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.CrackControlVars(idSection='nil', crackControlBaseVarsPos=None, crackControlBaseVarsNeg=None)

Bases: postprocess.control_vars.ControlVarsBase

Cracking serviceability limit state control variables.

Variables
  • idSection – section identifier

  • crackControlVarsPos – Crack control in + face.

  • crackControlVarsNeg – Crack control in - face.

getCF()

Return the capacity factor.

getDict()

Return a dictionary containing the object data.

getMaxN()

Maximum internal axial force.

getMaxSteelStress()

Maximum value for rebar stresses.

getStrArguments()

Returns a string for a ‘copy’ (kind of) constructor.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.FatigueControlBaseVars(combName='nil', CF=- 1.0, N=0.0, My=0.0, Mz=0.0, Vy=0.0, posSteelStress=0.0, negSteelStress=0.0, concreteStress=0.0)

Bases: postprocess.control_vars.NMyMz

Biaxial bending. Fatigue limit state variables.

Variables
  • Vy – shear force parallel to Y axis.

  • posSteelStress – traction stress in rebars.

  • negSteelStress – compression stress in rebars.

  • concreteStress – compression stress in concrete.

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.FatigueControlVars(idSection='nil', controlBaseVars0=None, controlBaseVars1=None, concreteLimitStress=0.0, concreteBendingCF=- 1.0, shearLimit=0.0, concreteShearCF=- 1.0, Mu=0.0, Vu=0.0)

Bases: postprocess.control_vars.ControlVarsBase

Fatigue limit state control variables.

Variables
  • idSection – section identifier

  • combName – name of the load combinations to deal with

  • state0 – Fatigue values (FatigueControlBaseVars) under permanent load.

  • state1 – Fatigue values (FatigueControlBaseVars) under fatigue load.

  • concreteLimitStress – limit for the concrete stress as specified in SIA 262(2013) 4.3.8.3.1

  • concreteBendingCF – concrete capacity factor under fatigue due to normal stresses.

  • shearLimit – limit for the shear force as sepecified in SIA 262(2013) 4.3.8.3.2

  • concreteShearCF – concrete capacity factor under fatigue due to shear forces.

  • Mu – ultimate bending moment

  • Vu – ultimate shear force

getAbsSteelStressIncrement()

Returns maximun stress increment in rebars (absolute value).

getConcreteMaxMinStresses()

Used in FatigueController.concreteLimitStress.

getConcreteMinStress()

Returns minimum (max. compressive) concrete stress between loaded and unloaded states.

getConcreteStressIncrement()

Returns stress increment in concrete.

getDict()

Return a dictionary containing the object data.

getSteelNegStressIncrement()

Returns negative stress increment in rebars.

getSteelPosStressIncrement()

Returns positive stress increment in rebars.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.N(combName='nil', NN=0.0)

Bases: postprocess.control_vars.ControlVarsBase

Uniaxial tension or compression. Internal force [N] for a combination.

Variables

N – axial force (defaults to 0.0)

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.NMy(combName='nil', N=0.0, My=0.0)

Bases: postprocess.control_vars.N

Uniaxial bending. Internal forces [N,My] for a combination.

Variables

My – bending moment about Y axis (defaults to 0.0)

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.NMyMz(combName='nil', N=0.0, My=0.0, Mz=0.0)

Bases: postprocess.control_vars.NMy

Biaxial bending. Internal forces [N,My,Mz] for a combination.

Variables

Mz – bending moment about Z axis (defaults to 0.0)

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.RCBucklingControlVars(combName='nil', N=0.0, My=0.0, Mz=0.0, effectiveLengths=None, mechLambda=None, fictitiousEccentricities=None)

Bases: postprocess.control_vars.BucklingControlVarsBase

Control variables for buckling ultimate limit state verification on reinforced concrete elements.

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.RCCrackControlVars(idSection=- 1, combName='nil', CF=- 1, N=0.0, My=0.0, Mz=0.0, s_rmax=0.0, sigma_s=0.0, sigma_c=0.0, wk=0.0)

Bases: postprocess.control_vars.CFNMyMz

Control variables for cracking serviacebility limit state verification.

Variables
  • idSection – section identifier.

  • s_rmax – maximum distance between cracks (otherwise a new crack could occur in-between)

  • wk – crack width

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.RCCrackStraightControlVars(idSection=- 1, combName='nil', CF=- 1, N=0.0, My=0.0, Mz=0.0, s_rmax=0.0, eps_sm=0.0, wk=0.0)

Bases: postprocess.control_vars.RCCrackControlVars

Control variables for cracking serviacebility limit state verification when when considering a concrete stress-strain diagram that takes account of the effects of tension stiffening.

Variables

eps_sm – mean strain in the reinforcement when taking into account the effects of tension stiffening

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.RCShearControlVars(idSection=- 1, combName='nil', CF=- 1.0, N=0.0, My=0.0, Mz=0.0, Mu=0.0, Vy=0.0, Vz=0.0, theta=0.0, Vu=0.0)

Bases: postprocess.control_vars.BiaxialBendingControlVars

Control variables for shear limit state verification in reinforced concrete elements.

Variables
  • Mu – ultimate bending moment

  • Vy – shear force parallel to the y axis

  • Vz – shear force parallel to the z axis

  • theta – angle between the concrete compression struts and the beam axis

  • Vu – shear strength

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.SIATypeRCShearControlVars(idSection=- 1, combName='nil', CF=- 1.0, N=0.0, My=0.0, Mz=0.0, Mu=0.0, Vy=0.0, Vz=0.0, theta=0.0, Vcu=0.0, Vsu=0.0, Vu=0.0)

Bases: postprocess.control_vars.RCShearControlVars

Control variables for shear limit state verification in EHE-08.

Variables
  • Vcu – Vcu component of the shear strength.

  • Vsu – Vsu component of the shear strength.

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.ShVy(combName='nil', Vy=0.0)

Bases: postprocess.control_vars.ControlVarsBase

Shear along Y axis. Internal forces [Vy] for a combination.

Variables
  • combName – name of the load combinations to deal with

  • Vy – shear along Y axis (defaults to 0.0)

getAnsysStrings(eTag, axis, factor=0.001)

Returns a string to represent fields in ANSYS (R).

Parameters
  • eTag – element identifier.

  • axis – section 1 or 2

  • factor – factor for units (default 1e-3 -> kN)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.ShearYControlVars(idSection='nil', combName='nil', CF=- 1.0, Vy=0.0)

Bases: postprocess.control_vars.CFVy

Shear along Y axis. Limit state variables [CF,Vy].

Variables

idSection – section identifier

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.SteelBucklingControlVars(combName='nil', N=0.0, My=0.0, Mz=0.0, effectiveLengths=None, mechLambda=None, strengthReductionFactors=None, bucklingResistance=None)

Bases: postprocess.control_vars.BucklingControlVarsBase

Control variables for buckling ultimate limit state verification on steel elements.

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.SteelShapeBiaxialBendingControlVars(idSection='nil', combName='nil', CF=- 1.0, N=0.0, My=0.0, Mz=0.0, Ncrd=0.0, McRdy=0.0, McRdz=0.0, MvRdz=0.0, MbRdz=0.0, chiLT=1.0, chiN=1.0)

Bases: postprocess.control_vars.BiaxialBendingStrengthControlVars

Control variables for biaxial bending normal stresses LS verification en steel-shape elements.

Variables
  • MvRdz – reduced design moment strength about Z (strong) axis for shear interaction

  • MbRdz – reduced design moment strength about Z (strong) axis for lateral-torsional bucking

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.control_vars.UniaxialBendingControlVars(idSection='nil', combName='nil', CF=- 1.0, N=0.0, My=0.0)

Bases: postprocess.control_vars.CFNMy

Uniaxial bending. Normal stresses limit state variables [CF,N,My].

Variables

idSection – section identifier.

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the data values.

class postprocess.control_vars.VonMisesControlVars(combName='nil', CF=- 1.0, vm_stress=0.0)

Bases: postprocess.control_vars.ControlVarsBase

Von Mises stresses control vars.

Variables
  • von_mises_stress – Von Mises stress (defaults to 0.0)

  • CF – capacity factor (efficiency) (defaults to -1.0; CF<1.0 -> Ok; CF>1.0 -> KO)

getCF()

Return the capacity factor.

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

postprocess.control_vars.extrapolate_control_var(elemSet, propName, argument, initialValue=0.0)

Extrapolates element’s control var values to the nodes.

Parameters
  • elemSet – set of elements.

  • propName – name of the property that contains the control variables.

  • argument – name of the control variable to extrapolate.

  • initialValue – initial value for the prop defined at the nodes.

postprocess.control_vars.getControlVarImportModuleStr(preprocessor, outputCfg, sections)

Return the string to import the module where the control var is defined.

Parameters
  • preprocessor – preprocessor from FEA model.

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed [defaults to ‘total’], append or not the results to the result file [defatults to ‘N’], generation or not of list file [defatults to ‘N’, …)

  • sections – names of the sections to write the output for.

postprocess.control_vars.get_diagram_direction(elem, component, defaultDirection)

Return the direction vector to represent the diagram over the element

Parameters
  • elem – element to deal with.

  • component – component to show. Valid components are: ‘N’, ‘Qy’, ‘Vy’, ‘Qz’, ‘Vz’, ‘My’, ‘Mz’, ‘T’

  • defaultDirection – default direction of the diagram (J: element local j vector or K: element local K vector).

postprocess.control_vars.get_element_internal_force_component_data(elem, component, defaultDirection)

Return the data to use to represent the diagram over the element

Parameters
  • elem – element to deal with.

  • component – component to show. Valid components are: ‘N’, ‘Qy’, ‘Vy’, ‘Qz’, ‘Vz’, ‘My’, ‘Mz’, ‘T’

  • defaultDirection – default direction of the diagram (J: element local j vector or K: element local K vector). If None ignore the direction information of the diagram.

postprocess.control_vars.write_control_vars_from_elements(preprocessor, controlVarsDict, outputCfg, sections)

Writes to file the control-variable values calculated for elements in set ‘setCalc’.

Parameters
  • preprocessor – preprocessor from FEA model.

  • controlVarsDict – dictionary containing the values of the control variables for each element.

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed [defaults to ‘total’], append or not the results to the result file [defatults to ‘N’], generation or not of list file [defatults to ‘N’, …)

  • sections – names of the sections to write the output for.

postprocess.control_vars.write_control_vars_from_elements_for_ansys(preprocessor, outputCfg, sectionName1, sectionName2)
Parameters
  • preprocessor – preprocessor for the FE problem.

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed [defaults to ‘total’], append or not the results to the result file [defatults to ‘N’], generation or not of list file [defatults to ‘N’, …)

  • sectioName1 – name of the first section to write the output for.

  • sectioName2 – name of the second section to write the output for.

postprocess.control_vars.write_control_vars_from_phantom_elements(controlVarsDict, outputCfg)
Writes to file the control-variable values calculated for

the RC elements in the phantom model.

Parameters
  • controlVarsDict – dictionary containing the values of the control variables for each element.

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (append or not the results to a file, generation or not of lists, …)

Control variables definition

THIS PROPERTIES MUST BE REPLACED BY THE CLASSES DEFINED IN control_vars.py THIS FILE MUST DISSAPEAR.

postprocess.def_vars_control.def_envelope_vars(elems: Iterable, varNames: Iterable, initV=6.023e+23, nNodes=2)

Define variables for generalizez stress control.

Parameters
  • elems – elements to define the envelope variables for.

  • varNames – variable names.

  • initV – initial value.

  • nNodes – number of nodes for each element in elems.

postprocess.def_vars_control.def_reactions_envelope_vars(nodes)
Define variables to store the maximum and minimum on each DOF for the

given nodes.

Parameters

nodes – nodes to add the reactions envelope variables into.

postprocess.def_vars_control.def_steel_shape_elastic_range_element_parameters(e, shape)
postprocess.def_vars_control.def_steel_shape_elastic_range_parameters_for_set(elems, shape)
postprocess.def_vars_control.def_var_control_mov(obj, code)

Define variables for movement control.

Parameters
  • obj – obj whose movement will be controlled.

  • code – movement identifier.

postprocess.def_vars_control.def_vars_control_mov_modulus(nodes: Iterable)

Define variables for control of the movement modulus.

Parameters

nodes – nodes whose movement will be controlled.

postprocess.def_vars_control.def_vars_control_movs(nodes: Iterable, flags: Iterable)

Define variables for movement control.

Parameters
  • nodes – nodes whose movement will be controlled.

  • flags – movement identifiers.

postprocess.def_vars_control.def_vars_control_tens_elastic_range_2d(elems)

Define variables for stress control in 2D elasticity problems.

postprocess.def_vars_control.def_vars_control_tens_elastic_range_3d(elems)
postprocess.def_vars_control.def_vars_envelope_internal_forces_beam_elems(elems)

Defines properties to store extreme values of internal forces.

Parameters

elems – nodes whose generalized stresses will be controlled.

postprocess.def_vars_control.def_vars_envelope_internal_forces_truss_elems(elems)

Defines properties to store extreme values of internal forces.

Parameters

elems – nodes whose generalized stresses will be controlled.

postprocess.def_vars_control.def_vars_generalized_stress_control(elems, varDef: Iterable)

Define variables for generalizez stress control.

Parameters
  • elems – elements whose generalized stresses will be controlled.

  • varDef – list of pairs of variable names and initial values to define as property on each element.

postprocess.def_vars_control.get_reaction_var_names(dim, numDOFs)

Return the variable names for the components of the reaction vectors.

Parameters
  • dim – dimension of the space (1, 2 or 3).

  • numDOFs – number of degrees of freedom.

postprocess.def_vars_control.update_envelope_internal_forces_beam_elem_2d(beamElem2D)

Update values for extreme values of internal forces in 2D elements.

Parameters

beamElem2D – finite element to update internal forces.

postprocess.def_vars_control.update_envelope_internal_forces_beam_elem_3d(beamElem)

Update values for extreme values of internal forces.

Parameters

beamElem – finite element to update internal forces.

postprocess.def_vars_control.update_envelope_internal_forces_truss(trussElem)

Update values for extreme values of internal forces in 2D elements.

Parameters

trussElem – finite element to update internal forces.

postprocess.def_vars_control.update_reactions_envelope(nodes)
Update the the maximum and minimum reactino on each DOF for the

given nodes.

Parameters

nodes – nodes to update the reactions for.

Displayable_results

class postprocess.displayable_results.ResultDescription(attributeName, argument, description, units='')

Bases: object

getCaption()
getReinforcementLabel()
class postprocess.displayable_results.ResultsDescriptionContainer(limitStateData, lst)

Bases: dict

Results to display as figures.

Variables
  • limitStateData – string defining limit state check label (something like “Fatigue” or “CrackControl”) and the name of the file that contains the results to display.

  • lst – list of results descriptions.

add(rd)
display(tp, partToDisplay)

Calls TakePhoto object tp to display figures corresponding to part.

Parameters
  • tp – TakePhoto object to use to capture the image.

  • partToDisplay – part of the model that will be displayed.

getBaseOutputFileName(partCode)

Returns the basic part of the output file names.

getFigureDefinitionList(partToDisplay)

Builds a list of figures to display.

param: partToDisplay: part of the model which will be displayed

getLaTeXFigureListFileName(partCode)

Return the name of the LaTeX file to write a list explaining figures.

getLaTeXOutputFileName(partCode)

Return the name of the LaTeX file to write figures into.

postprocess.displayable_results.cVars = ['combName', 'N', 'My', 'CF', 'idSection', 'Mz']
issDRnormFrench= ResultsDescriptionContainer(nsr,[ResultDescription(“FCCP1”,”Facteur de capacité (contraintes normales) des éléments sous charges durables (ELUT2*)”),

ResultDescription(“NCP1”,”Effort normal associé au facteur de capacité (contraintes normales) sous charges durables”, ‘kN/m’), ResultDescription(“MyCP1”,”Moment de flexion associé au facteur de capacité (contraintes normales) sous charges durables”, ‘m.kN/m’), ResultDescription(“FCCP2”,”Facteur de capacité (contraintes normales) des éléments sous charges durables (ELUT2*)”), ResultDescription(“NCP2”,”Effort normal associé au facteur de capacité (contraintes normales) sous charges durables”, ‘kN/m’), ResultDescription(“MyCP2”,”Moment de flexion associé au facteur de capacité (contraintes normales) sous charges durables”, ‘m.kN/m’)])

#Issues sous charges durables - contraintes de cisaillement shr= lsd.shearResistance issDRcisFrench= ResultsDescriptionContainer(lsd.shearResistance,[ResultDescription(“FCCP1”,”Facteur de capacité (contraintes de cisaillement) des éléments sous charges durables (ELUT2*)”),

ResultDescription(“NCP1”,”Effort normal associé au facteur de capacité (contraintes de cisaillement) sous charges durables”, ‘kN/m’), ResultDescription(“VuCP1”,”Effort tranchant associé au facteur de capacité (contraintes de cisaillement) sous charges durables”, ‘kN/m’), ResultDescription(“FCCP2”,”Facteur de capacité (contraintes de cisaillement) des éléments sous charges durables (ELUT2*)”), ResultDescription(“NCP2”,”Effort normal associé au facteur de capacité (contraintes de cisaillement) sous charges durables”, ‘kN/m’), ResultDescription(“VuCP2”,”Effort tranchant associé au facteur de capacité (contraintes de cisaillement) sous charges durables”, ‘kN/m’)])

#Fatigue fr= lsd.fatigueResistance issFatigueFrench= ResultsDescriptionContainer(fr,[ResultDescription(“sg_sPos01”,”Contraintes dans l’acier sous charges permanentes, face positive”, ‘MPa’),

ResultDescription(“sg_sPos11”,”Contraintes dans l’acier sous modèle de charge de fatigue, face positive”, ‘MPa’), ResultDescription(“inc_sg_sPos1”,”Incrément des Contraintes dans l’acier sous modèle de charge de fatigue, face positive”, ‘MPa’), ResultDescription(“sg_sNeg01”,”Contraintes dans l’acier sous charges permanentes, face negative”, ‘MPa’), ResultDescription(“sg_sNeg11”,”Contraintes dans l’acier sous modèle de chargge de fatigue, face negative”, ‘MPa’), ResultDescription(“inc_sg_sNeg1”,”Incrément des contraintes dans l’acier sous modèle de charge de fatigue, face negative”, ‘MPa’), ResultDescription(“inc_sg_s1”,”Enveloppe des incréments des contraintes dans l’acier sous modèle de charge de fatigue (faces negative et positive)”, ‘MPa’), ResultDescription(“sg_c01”,”Contraintes dans le béton sous charges permanentes”, ‘MPa’), ResultDescription(“inc_sg_c1”,”Incrèment des Contraintes dans le béton sous modèle de charge de fatige”, ‘MPa’), ResultDescription(“N01”,”Effort normal sous charges permanentes”, ‘kN/m’), ResultDescription(“N11”,”Effort normal sous modèle de charge de fatigue”, ‘kN/m’), ResultDescription(“My01”,”Moment de flexion sous charges permanentes”, ‘kN m/m’), ResultDescription(“My11”,”Effort tranchant sous modèle de charge de fatigue”, ‘ kN m/m’), ResultDescription(“Vy01”,”Moment de flexion sous charges permanentes”, ‘kN m/m’), ResultDescription(“Vy11”,”Effort tranchant sous modèle de charge de fatigue”, ‘kN/m’), ResultDescription(“Mu1”,”Valeur ultime du moment de flexion”, ‘kN m/m’), ResultDescription(“Vu1”,”Valeur ultime de l’Effort tranchant”, ‘ kN/m’), ResultDescription(“sg_sPos02”,”Contraintes dans l’acier sous charges permanentes, face positive”, ‘MPa’), ResultDescription(“sg_sPos12”,”Contraintes dans l’acier sous modèle de charge de fatigue, face positive”, ‘MPa’), ResultDescription(“inc_sg_sPos2”,”Incrément des Contraintes dans l’acier sous modèle de charge de fatigue, face positive”, ‘MPa’), ResultDescription(“sg_sNeg02”,”Contraintes dans l’acier sous charges permanentes, face negative”, ‘MPa’), ResultDescription(“sg_sNeg12”,”Contraintes dans l’acier sous modèle de chargge de fatigue, face negative”, ‘MPa’), ResultDescription(“inc_sg_sNeg2”,”Incrément des contraintes dans l’acier sous modèle de charge de fatigue, face negative”, ‘MPa’), ResultDescription(“inc_sg_s2”,”Enveloppe des incréments des contraintes dans l’acier sous modèle de charge de fatigue (faces negative et positive)”, ‘MPa’), ResultDescription(“sg_c02”,”Contraintes dans le béton sous charges permanentes”, ‘MPa’), ResultDescription(“inc_sg_c2”,”Incrèment des Contraintes dans le béton sous modèle de charge de fatige”, ‘MPa’), ResultDescription(“N02”,”Effort normal sous charges permanentes”, ‘kN/m’), ResultDescription(“N12”,”Effort normal sous modèle de charge de fatigue”, ‘kN/m’), ResultDescription(“My02”,”Moment de flexion sous charges permanentes”, ‘kN m/m’), ResultDescription(“My12”,”Effort tranchant sous modèle de charge de fatigue”, ‘ kN m/m’), ResultDescription(“Vy02”,”Moment de flexion sous charges permanentes”, ‘kN m/m’), ResultDescription(“Vy12”,”Effort tranchant sous modèle de charge de fatigue”, ‘kN/m’), ResultDescription(“Mu2”,”Valeur ultime du moment de flexion”, ‘kN m/m’), ResultDescription(“Vu2”,”Valeur ultime de l’Effort tranchant”, ‘ kN/m’)])

# #Results under quasi-permanent loads (crack control) # issQPfisEsp= ResultsDescriptionContainer(lsd.quasiPermanentLoadsCrackControl,[ResultDescription(“sg_sPos1”,”Envolvente de tensiones máximas bajo cargas quasi-permanentes, cara positiva”, ‘MPa’), # ResultDescription(“NCPPos1”,”Axil asociado a la envolvente de tensiones máximas bajo cargas quasi-permanentes, cara positiva”, ‘kN/m’), # ResultDescription(“MyCPPos1”,”Momento flector asociado a la envolvente de tensiones máximas bajo cargas quasi-permanentes, cara positiva”, ‘m.kN/m’), # ResultDescription(“sg_sNeg1”,”Envolvente de tensiones máximas bajo cargas quasi-permanentes, cara negativa”, ‘MPa’), # ResultDescription(“NCPNeg1”,”Axil asociado a la envolvente de tensiones máximas bajo cargas quasi-permanentes, cara negativa”, ‘kN/m’), # ResultDescription(“MyCPNeg1”,”Momento flector asociado a la envolvente de tensiones máximas bajo cargas quasi-permanentes, cara negativa”, ‘m.kN/m’), # ResultDescription(“sg_sPos2”,”Envolvente de tensiones máximas bajo cargas quasi-permanentes, cara positiva”, ‘MPa’), # ResultDescription(“NCPPos2”,”Axil asociado a la envolvente de tensiones máximas bajo cargas quasi-permanentes, cara positiva”, ‘kN/m’), # ResultDescription(“MyCPPos2”,”Momento flector asociado a la envolvente de tensiones máximas bajo cargas quasi-permanentes, cara positiva”, ‘m.kN/m’), # ResultDescription(“sg_sNeg2”,”Envolvente de tensiones máximas bajo cargas quasi-permanentes, cara negativa”, ‘MPa’), # ResultDescription(“NCPNeg2”,”Axil asociado a la envolvente de tensiones máximas bajo cargas quasi-permanentes, cara negativa”, ‘kN/m’), # ResultDescription(“MyCPNeg2”,”Momento flector asociado a la envolvente de tensiones máximas bajo cargas quasi-permanentes, cara negativa”, ‘m.kN/m’)])

# #Results under frequent loads (crack control) # issFQfisEsp= ResultsDescriptionContainer(lsd.freqLoadsCrackControl, [ResultDescription(“sg_sPos1”,”Envolvente de tensiones máximas bajo cargas frecuentes, cara positiva”, ‘MPa’), # ResultDescription(“NCPPos1”,”Axil asociado a la envolvente de tensiones máximas bajo cargas frecuentes, cara positiva”, ‘kN/m’), # ResultDescription(“MyCPPos1”,”Momento flector asociado a la envolvente de tensiones máximas bajo cargas frecuentes, cara positiva”, ‘m.kN/m’), # ResultDescription(“sg_sNeg1”,”Envolvente de tensiones máximas bajo cargas frecuentes, cara negativa”, ‘MPa’), # ResultDescription(“NCPNeg1”,”Axil asociado a la envolvente de tensiones máximas bajo cargas frecuentes, cara negativa”, ‘kN/m’), # ResultDescription(“MyCPNeg1”,”Momento flector asociado a la envolvente de tensiones máximas bajo cargas frecuentes, cara negativa”, ‘m.kN/m’), # ResultDescription(“sg_sPos2”,”Envolvente de tensiones máximas bajo cargas frecuentes, cara positiva”, ‘MPa’), # ResultDescription(“NCPPos2”,”Axil asociado a la envolvente de tensiones máximas bajo cargas frecuentes, cara positiva”, ‘kN/m’), # ResultDescription(“MyCPPos2”,”Momento flector asociado a la envolvente de tensiones máximas bajo cargas frecuentes, cara positiva”, ‘m.kN/m’), # ResultDescription(“sg_sNeg2”,”Envolvente de tensiones máximas bajo cargas frecuentes, cara negativa”, ‘MPa’), # ResultDescription(“NCPNeg2”,”Axil asociado a la envolvente de tensiones máximas bajo cargas frecuentes, cara negativa”, ‘kN/m’), # ResultDescription(“MyCPNeg2”,”Momento flector asociado a la envolvente de tensiones máximas charges frecuentes, cara negativa”, ‘m.kN/m’)])

# #Results under permanent loads (normal stresses). # issDRnormEsp= ResultsDescriptionContainer(lsd.normalStressesResistance,[ResultDescription(“FCCP1”,”Factor de capacidad (tensiones normales) de los elementos bajo cargas durables (ELUT2*)”), # ResultDescription(“NCP1”,”Axil asociado al factor de capacidad (tensiones normales) bajo cargas durables”, ‘kN/m’), # ResultDescription(“MyCP1”,”Momento flector asociado al factor de capacidad (tensiones normales) bajo cargas durables”, ‘m.kN/m’), # ResultDescription(“FCCP2”,”Factor de capacidad (tensiones normales) de los elementos bajo cargas durables (ELUT2*)”), # ResultDescription(“NCP2”,”Axil asociado al factor de capacidad (tensiones normales) bajo cargas durables”, ‘kN/m’), # ResultDescription(“MyCP2”,”Momento flector asociado al factor de capacidad (tensiones normales) bajo cargas durables”, ‘m.kN/m’)])

# #Results under permanent loads (shear). # issDRcisEsp= ResultsDescriptionContainer(lsd.shearResistance,[ResultDescription(“FCCP1”,”Factor de capacidad (tensiones tangenciales) de los elementos bajo cargas durables (ELUT2*)”), # ResultDescription(“NCP1”,”Axil asociado al factor de capacidad (tensiones tangenciales) bajo cargas durables”, ‘kN/m’), # ResultDescription(“VuCP1”,”Esfuerzo cortante asociado al factor de capacidad (tensiones tangenciales) bajo cargas durables”, ‘kN/m’), # ResultDescription(“FCCP2”,”Factor de capacidad (tensiones tangenciales) de los elementos bajo cargas durables (ELUT2*)”), # ResultDescription(“NCP2”,”Axil asociado al factor de capacidad (tensiones tangenciales) bajo cargas durables”, ‘kN/m’), # ResultDescription(“VuCP2”,”Esfuerzo cortante asociado al factor de capacidad (tensiones tangenciales) bajo cargas durables”, ‘kN/m’)])

# #Fatigue # issFatigueEsp= ResultsDescriptionContainer(lsd.fatigueResistance,[ResultDescription(“sg_sPos01”,”Tensiones en el acero bajo cargas permanentes, cara positiva”, ‘MPa’), # ResultDescription(“sg_sPos11”,”Tensiones en el acero bajo el modelo de carga de fatiga, cara positiva”, ‘MPa’), # ResultDescription(“inc_sg_sPos1”,”Incremento de tensiones en el acero bajo el modelo de carga de fatiga, cara positiva”, ‘MPa’), # ResultDescription(“sg_sNeg01”,”Tensiones en el acero bajo cargas permanentes, cara negativa”, ‘MPa’), # ResultDescription(“sg_sNeg11”,”Tensiones en el acero bajo el modelo de carga de fatiga, cara negativa”, ‘MPa’), # ResultDescription(“inc_sg_sNeg1”,”Incremento de tensión en el acero bajo el modelo de carga de fatiga, cara negativa”, ‘MPa’), # ResultDescription(“inc_sg_s1”,”Envolvente del incremento de tensión en el acero bajo el modelo de carga de fatiga (faces negative et positive)”, ‘MPa’), # ResultDescription(“sg_c01”,”Tensiones en el hormigón bajo cargas permanentes”, ‘MPa’), # ResultDescription(“inc_sg_c1”,”Incremento de tensiones en el hormigón bajo el modelo de carga de fatiga”, ‘MPa’), # ResultDescription(“N01”,”Axil bajo cargas permanentes”, ‘kN/m’), # ResultDescription(“N11”,”Axil bajo el modelo de carga de fatiga”, ‘kN/m’), # ResultDescription(“My01”,”Momento flector bajo cargas permanentes”, ‘kN m/m’), # ResultDescription(“My11”,”Esfuerzo cortante bajo el modelo de carga de fatiga”, ‘ kN m/m’), # ResultDescription(“Vy01”,”Momento flector bajo cargas permanentes”, ‘kN m/m’), # ResultDescription(“Vy11”,”Esfuerzo cortante bajo el modelo de carga de fatiga”, ‘kN/m’), # ResultDescription(“Mu1”,”Valeur ultime du moment de flexion”, ‘kN m/m’), # ResultDescription(“Vu1”,”Valeur ultime de l’Esfuerzo cortante”, ‘ kN/m’), # ResultDescription(“sg_sPos02”,”Tensiones en el acero bajo cargas permanentes, cara positiva”, ‘MPa’), # ResultDescription(“sg_sPos12”,”Tensiones en el acero bajo el modelo de carga de fatiga, cara positiva”, ‘MPa’), # ResultDescription(“inc_sg_sPos2”,”Incremento de tensiones en el acero bajo el modelo de carga de fatiga, cara positiva”, ‘MPa’), # ResultDescription(“sg_sNeg02”,”Tensiones en el acero bajo cargas permanentes, cara negativa”, ‘MPa’), # ResultDescription(“sg_sNeg12”,”Tensiones en el acero sous modèle de charge de fatigue, cara negativa”, ‘MPa’), # ResultDescription(“inc_sg_sNeg2”,”Incremento de tensión en el acero bajo el modelo de carga de fatiga, cara negativa”, ‘MPa’), # ResultDescription(“inc_sg_s2”,”Envolvente del incremento de tensión en el acero bajo el modelo de carga de fatiga (faces negative et positive)”, ‘MPa’), # ResultDescription(“sg_c02”,”Tensiones en el hormigón bajo cargas permanentes”, ‘MPa’), # ResultDescription(“inc_sg_c2”,”Incremento de tensiones en el hormigón bajo el modelo de carga de fatiga”, ‘MPa’), # ResultDescription(“N02”,”Axil bajo cargas permanentes”, ‘kN/m’), # ResultDescription(“N12”,”Axil bajo el modelo de carga de fatiga”, ‘kN/m’), # ResultDescription(“My02”,”Momento flector bajo cargas permanentes”, ‘kN m/m’), # ResultDescription(“My12”,”Esfuerzo cortante bajo el modelo de carga de fatiga”, ‘ kN m/m’), # ResultDescription(“Vy02”,”Momento flector bajo cargas permanentes”, ‘kN m/m’), # ResultDescription(“Vy12”,”Esfuerzo cortante bajo el modelo de carga de fatiga”, ‘kN/m’), # ResultDescription(“Mu2”,”Valor último del momento flector”, ‘kN m/m’), # ResultDescription(“Vu2”,”Valor último del esfuerzo cortante”, ‘ kN/m’)])

Element section map

class postprocess.element_section_map.ElementSectionMap

Bases: object

dictionary that stores a section name(s) for each element number.

This way it defines a spatial distribution of the sections over the structure.

Variables

elementDimension – dictionary to store the dimension (1, 2 or 3) of each element.

assign(elemSet, setRCSects)

Assigns the sections names to the elements of the set.

Parameters
  • elemSet – set of elements that receive the section names property.

  • setRCSects – RC section definition, name, concrete type, rebar positions,…

assignFromElementProperties(elemSet, sectionWrapperName)
Creates the section materials from the element properties

and assigns them to the elements of the argument set .

Parameters
  • elemSet – set of elements that receive the section names property.

  • sectionWrapperName – name to use as prefix for the sections that will be created for the elements of the set.

getDict()

Return a dictionary containing the object data.

getElementDimension(elemTag)
Return the dimension of the element whose tag is being passed

as parameter.

Parameters

tagElem – master element identifier.

keys()
classmethod newFromDict(dct)

Builds a new object from the data in the given dictionary.

Parameters
  • cls – class of the object itself.

  • dct – dictionary contaning the data.

propName = 'name'
setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.element_section_map.ElementSections(name, directions=[1, 2], gaussPoints=[1])

Bases: object

This class defines the list of reinforced concrete sections that are

going to be associated to a set of elements in order to carry out the verifications of the limit states.

Variables
  • name – name given to the list of reinforced concrete sections

  • directions – list of the directions to consider for each integration point.

  • gaussPoints – list of the integration points to consider for each element.

  • lstRCSects

    list of reinforced concrete fiber-sections that will be associated to a set of elements in order to carry out their LS verifications. The items of the list are instances of the objects derived from RCSectionBase

    The sections are ordered by integration point and then by direction. For example for an element with three integration point and two directions the order is as follows:

    lstRCSects[0]= integration point 1, direction 1 lstRCSects[1]= integration point 1, direction 2 lstRCSects[2]= integration point 2, direction 1 lstRCSects[3]= integration point 2, direction 2 lstRCSects[4]= integration point 3, direction 1 lstRCSects[5]= integration point 3, direction 2

append_section(RCSect)

Append the section argument to the container.

Parameters

RCSect – reinforced concrete section to append.

creaSingleSection(templateSection, direction, gaussPnt)

create a copy of the section argument for the gauss points and the direction arguments.

createSections(templateSections, forceCreation=False)

create the fiber sections that represent the material to be used for the checking on each integration point and/or each direction. These sections are also added to the attribute ‘lstRCSects’ that contains the list of sections.

Parameters

forceCreation – if true, creeate the sections even if the internal section container is not empty.

defRCSections(preprocessor, matDiagType='k')

Definition of XC reinforced concrete sections.

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • matDiagType – type of stress-strain diagram (“k” for characteristic diagram, “d” for design diagram)

find_section(sectionName)
Return the section whose name is the value passed as parameter or

None if the section is not in the list.

Parameters

sectionName – section name.

getDict()

Return a dictionary containing the object data.

getSectionNames()

Return the names of the secions in the container.

classmethod newFromDict(dct=None)

Builds a new object from the data in the given dictionary.

Parameters
  • cls – class of the object itself.

  • dct – dictionary contaning the data.

pdfReport(graphicWidth='70mm', showPDF=False, keepPDF=True, preprocessor=None, matDiagType='k')

Get a drawing of the sections using matplotlib.

Parameters
  • graphicWidth – width for the cross-section graphic.

  • showPDF – if true display the PDF output on the screen.

  • keepPDF – if true don’t remove the PDF output.

  • preprocessor – pre-processor of the FE problem.

  • matDiagType – diagram type; if “k” use the diagram corresponding to characteristic values of the material, if “d” use the design values one.

plot(preprocessor, matDiagType='k')

Get a drawing of the sections using matplotlib.

Parameters
  • preprocessor – pre-processor of the FE problem.

  • matDiagType – diagram type; if “k” use the diagram corresponding to characteristic values of the material, if “d” use the design values one.

rename(newName)

Change the object name.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.element_section_map.LegacyRCSlabBeamSection(name, sectionDescr, concrType, reinfSteelType, depth, width=1.0, elemSet=None)

Bases: postprocess.element_section_map.RCSlabBeamSection

This class is used for compatibility with older code. The main difference is that the slab reinforcement is linked with an element set.

Variables

dir2ShReinfZ – instance of class ShearReinforcement that represents the Z shear reinforcement in section 2

class postprocess.element_section_map.RCMemberSection(name, templateSections, directions=[1], gaussPoints=[1, 2])

Bases: postprocess.element_section_map.ElementSections

This class is an specialization of ElemenSections for rectangular sections. The items of the list are instances of the object RCRectangularSection

createSections()

create the fiber sections that represent the reinforced concrete fiber section to be used for the checking on each integration point and/or each direction. These sections are also added to the attribute ‘lstRCSects’ that contains the list of sections.

defRCSections(preprocessor, matDiagType='k')

Definition of XC reinforced concrete sections.

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • matDiagType – type of stress-strain diagram (“k” for characteristic diagram, “d” for design diagram)

getDict()

Return a dictionary containing the object data.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.element_section_map.RCSlabBeamSection(name=None, sectionDescr=None, concrType=None, reinfSteelType=None, depth=None, width=1.0)

Bases: postprocess.element_section_map.SetRCSections2SetElVerif

This class is used to define the variables that make up the two reinforced concrete sections that define the two reinforcement directions of a slab or the front and back ending sections of a beam element

Variables
  • sectionDescr – section description

  • concrType – type of concrete (e.g. EHE_materials.HA25)

  • reinfSteelType – type of reinforcement steel

  • depth – cross-section depth

  • width – cross-section width (defaults to 1.0)

  • dir1PositvRebarRows – layers of main rebars in direction 1 in the local positive face of the section (list of ReinfRow)

  • dir1NegatvRebarRows – layers of main rebars in direction 1 in the local negative face of the section (list of ReinfRow)

  • dir2PositvRebarRows – layers of main rebars in direction 2 in the local positive face of the section (list of ReinfRow)

  • dir2NegatvRebarRows – layers of main rebars in direction 2 in the local negative face of the section (list of ReinfRow)

  • dir1ShReinfY – instance of class ShearReinforcement that represents the Y shear reinforcement in section 1

  • dir1ShReinfZ – instance of class ShearReinforcement that represents the Z shear reinforcement in section 1

  • dir2ShReinfY – instance of class ShearReinforcement that represents the Y shear reinforcement in section 2

  • dir2ShReinfZ – instance of class ShearReinforcement that represents the Z shear reinforcement in section 2

createSections()

create the fiber sections of type ‘RCRectangularSection’ that represent the reinforced concrete fiber section to be used for the checking on each integration point and/or each direction. These sections are also added to the attribute ‘lstRCSects’ that contains the list of sections.

defRCSections(preprocessor, matDiagType='k')

Definition of XC reinforced concrete sections.

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • matDiagType – type of stress-strain diagram (“k” for characteristic diagram, “d” for design diagram)

getAs()

Return the total reinforcement area.

getAs1neg()

Steel area in local negative face direction 1.

getAs1pos()

Steel area in local positive face direction 1.

getAs2neg()

Steel area in local negative face direction 2.

getAs2pos()

Steel area in local positive face direction 2.

getCopy()

Return a copy of this object.

getDiam(code)

list of bar diameter.

getDiam1neg()

list of bar diameter in rows of the local negative face direction 1.

getDiam1pos()

list of bar diameter in rows of the local positive face direction 1.

getDiam2neg()

list of bar diameter in rows of the local negative face direction 2.

getDiam2pos()

list of bar diameter in rows of the local positive face direction 2.

getDict()

Return a dictionary containing the object data.

getElasticMembranePlateSection(preprocessor, reductionFactor=1.0)

Return an elastic membrane plate section material.

Parameters
  • preprocessor – proprocessor for the finite element problem.

  • reductionFactor – factor that divides the concrete elastic modulus to simulate the effect of cracking, normally between 1.0 and 7.0.

getMainReinfProperty(code)
getNBar1neg()

list of number of bars in rows of the local negative face direction 1.

getNBar1pos()

list of number of bars in rows of the local positive face direction 1.

getNBar2neg()

list of number of bars in rows of the local negative face direction 2.

getNBar2pos()

list of number of bars in rows of the local positive face direction 2.

getReinfArea(code)

get steel area. code=’As1+’ for direction 1, positive face code=’As1-’ for direction 1, negative face code=’As2+’ for direction 2, positive face code=’As2-’ for direction 2, negative face

getS(code)

list of distances between bars code=’s1+’ for direction 1, positive face code=’s1-’ for direction 1, negative face code=’s2+’ for direction 2, positive face code=’s2-’ for direction 2, negative face

getS1neg()

list of distances between bars of rows in the local negative face direction 1.

getS1pos()

list of distances between bars of rows the in local positive face direction 1.

getS2neg()

list of distances between bars of rows in the local negative face direction 2.

getS2pos()

list of distances between bars of rows in the local positive face direction 2.

getTemplateSection(posReb, negReb, YShReinf, ZShReinf)

Return the template section to use with createSingleSection method.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

setShearReinfD1(nShReinfBranches, areaShReinfBranch, spacing)
setShearReinfD2(nShReinfBranches, areaShReinfBranch, spacing)
class postprocess.element_section_map.RawShellSections(name, templateSections, directions=[1, 2], gaussPoints=[1])

Bases: postprocess.element_section_map.ElementSections

This class is an specialization of ElemenSections for rectangulars sections in two-dimensional members (slabs, walls). The items of the list are instances of the object RCRectangularSection

alreadyDefinedSections = []
createSections()
Create the fiber sections that represent the reinforced concrete

fiber section to be used for the checking on each integration point and/or each direction. These sections are also added to the attribute

‘lstRCSects’ that contains the list of sections.

defRCSections(preprocessor, matDiagType='k')

Definition of XC reinforced concrete sections.

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • matDiagType – type of stress-strain diagram (“k” for characteristic diagram, “d” for design diagram)

getDict()

Return a dictionary containing the object data.

report(os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, indentation='')

Get a report of the object contents.

Parameters
  • os – output stream.

  • indentation – indentation to apply to the subsequent lines.

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

class postprocess.element_section_map.SetRCSections2SetElVerif(name, directions, gaussPoints)

Bases: postprocess.element_section_map.ElementSections

This class is an specialization of ElemenSections for rectangular sections. The items of the list are instances of the object RCRectangularSection

getAsneg(sectNmb)

Steel area in local negative face of the simple section identified by the sectNmb

Parameters

sectNmb – integer number identifying the section (1 correponds to the section stored in lstRCSects[0] …)

getAspos(sectNmb)

Steel area in local positive face of the simple section identified by the sectNmb

Parameters

sectNmb – integer number identifying the section (1 correponds to the section stored in lstRCSects[0] …)

getDiamneg(sectNmb)

list of bar diameter in rows of the local negative face of the simple section identified by the sectNmb

Parameters

sectNmb – integer number identifying the section (1 correponds to the section stored in lstRCSects[0] …)

getDiampos(sectNmb)

list of bar diameter in rows of the local positive face of the simple section identified by the sectNmb

Parameters

sectNmb – integer number identifying the section (1 correponds to the section stored in lstRCSects[0] …)

getNBarneg(sectNmb)

list of number of bars in rows of the local negative face of the simple section identified by the sectNmb

Parameters

sectNmb – integer number identifying the section (1 correponds to the section stored in lstRCSects[0] …)

getNBarpos(sectNmb)

list of number of bars in rows of the local positive face of the simple section identified by the sectNmb

Parameters

sectNmb – integer number identifying the section (1 correponds to the section stored in lstRCSects[0] …)

getSneg(sectNmb)

list of distances between bars of rows in the local negative face of the simple section identified by the sectNmb

Parameters

sectNmb – integer number identifying the section (1 correponds to the section stored in lstRCSects[0] …)

getSpos(sectNmb)

list of distances between bars of rows the in local positive face of the simple section identified by the sectNmb

Parameters

sectNmb – integer number identifying the section (1 correponds to the section stored in lstRCSects[0] …)

setShearReinf(sectNmb, nShReinfBranches, areaShReinfBranch, spacing)

sets parameters of the shear reinforcement of the simple section identified by the sectNmb

Parameters
  • sectNmb – integer number identifying the section (1 correponds to the section stored in lstRCSects[0] …)

  • nShReinfBranches – number of shear reinforcing branches

  • areaShReinfBranch – area of the cross-section of each stirrup

  • spacing – spacing of the stirrups

postprocess.element_section_map.loadMainRefPropertyIntoElements(elemSet, sectionContainer, code)

add to each element of the set the desired property (As1+,As1-,…,d1+,d1-,…).

Extrapolate element attributes

Extrapolate attribute values of elements.

postprocess.extrapolate_elem_attr.average_on_nodes(preprocessor, touchedNodes, attributeName)

Divide by number of elements in the set that touch the node.

postprocess.extrapolate_elem_attr.create_attribute_at_nodes(xcSet, attributeName, initialValue)

Create an attribute on the nodes of the set passed as parameter. Returns a dictionary with the number of elements connected to a node indexed by the node tag.

Parameters
  • xcSet – nodes that will receive the attribute.

  • attributeName – name of the attribute to define.

  • initialValue – initial value to assign to the attribute.

postprocess.extrapolate_elem_attr.extrapolate_elem_data_to_nodes(elemSet, attributeName, function, argument=None, initialValue=0.0, transformToLocalCoord=False)

Extrapolate element’s function values to the nodes.

Parameters
  • elemSet – set of elements.

  • attributeName – name of the property which will be defined at the nodes.

  • function – name of the method to call for each element.

  • argument – name of the argument for the function call function (optional).

  • initialValue – initial value for the attribute defined at the nodes.

  • transformToLocalCoord – if true (and appropriate), express the obtained result in local coordinates.

postprocess.extrapolate_elem_attr.extrapolate_elem_function_attr(elemSet, attributeName, function, argument, initialValue=0.0)

Extrapolate element’s function values to the nodes.

Parameters
  • elemSet – set of elements.

  • attributeName – name of the property which will be defined at the nodes.

  • function – name of the function to call for each element.

  • argument – name of the argument for the function call function (optional).

  • initialValue – initial value for the attribute defined at the nodes.

postprocess.extrapolate_elem_attr.flatten_attribute(elemSet, attributeName, treshold, limit)

Reduce higher values which hide attribute variation over the model.

Parameters
  • elemSet – set of elements to deal with.

  • attributeName – attribute to be flattened.

  • treshold – starting value to apply flatten.

  • limit – limit

postprocess.extrapolate_elem_attr.transform_to_local_coordinates(element, value)

Transform the given value to local coordinates in the given element.

Parameters
  • element – element to get local coordinates from.

  • value – value to transform:

Figure collection

class postprocess.figure_collection.FigsCollectionPlotter

Bases: object

fUnits = '[kN/m]'
fieldFilesPath = 'reinforcement/results/'
graphicOutputPath = 'post_process/results/figures/'
latexOutputPath = 'post_process/results/'
mUnits = '[kN m/m]'
plotCommonControlVars(preprocessor, partName, elemSetName, figureList, outputFilesSuffix)

Plot figures showing the values of common control vars.

Parameters
  • preprocessor – preprocessor of the finite element model.

  • partName – name of the model part.

  • elemSetName – name of the set to display.

  • figureList – list of figures to plot.

  • outputFilesSuffix – suffix for the output files.

plotCrackingControlVars(preprocessor, partName, elemSetName, slsStr)

Plot the cracking efficiencies and associated rebar stresses.

Parameters
  • preprocessor – preprocessor of the finite element model.

  • partName – name of the model part.

  • elemSetName – name of the set to display.

  • slsStr – ‘characteristic’ or ‘frequent’ or ‘quasi-permanent’

plotFatigue(preprocessor, partName, elemSetName)

Plot fatigue results.

Parameters
  • preprocessor – preprocessor of the finite element model.

  • partName – name of the model part.

  • elemSetName – name of the set to display.

plotFissurationFreq(preprocessor, partName, elemSetName)

Plot the cracking efficiencies and associated rebar stresses.

Parameters
  • preprocessor – preprocessor of the finite element model.

  • partName – name of the model part.

  • elemSetName – name of the set to display.

plotFissurationQP(preprocessor, partName, elemSetName)

Plot the cracking efficiencies and associated rebar stresses.

Parameters
  • preprocessor – preprocessor of the finite element model.

  • partName – name of the model part.

  • elemSetName – name of the set to display.

plotNormalStresses(preprocessor, partName, elemSetName)

Plot the bending strength efficiencies and associated bending moments.

Parameters
  • preprocessor – preprocessor of the finite element model.

  • partName – name of the model part.

  • elemSetName – name of the set to display.

plotShear(preprocessor, partName, elemSetName)

Plot the shear strength efficiencies and associated shear forces.

Parameters
  • preprocessor – preprocessor of the finite element model.

  • partName – name of the model part.

  • elemSetName – name of the set to display.

reinforcementText1 = 'Longitudinal reinforcement'
reinforcementText2 = 'Transverse reinforcement'
sUnits = '[MPa]'

Get reactions

Reactions on nodes.

class postprocess.get_reactions.Reactions(preprocessor, supportNodes, inclInertia=False)

Bases: object

Object that stores the reactions of a set of nodes.

Variables
  • forces – dictionary containing the reaction forces for each node.

  • moments – dictionary containing the reaction moments for each node.

  • positions – dictionary containing the positions of each node.

  • svdReac – sliding vector system equivalent to the reactions.

getReactionForces()

Returns a dictionary with the reactions forces at the nodes. The key of the map is the node tag.

getReactionMoments()

Returns a dictionary with the reactions moments at the nodes. The key of the map is the node tag.

getResultantSVS()

Limit state data

Utilities for limit state checking.

class postprocess.limit_state_data.BucklingParametersLimitStateData(numModes=4, limitStateLabel='ULS_bucklingParametersComputation', outputDataBaseFileName='verifRsl_bucklingULS', designSituations=['uls_permanent', 'uls_accidental', 'uls_earthquake'])

Bases: postprocess.limit_state_data.ULS_LimitStateData

Buckling parameters data for limit state checking.

Variables

numModes – number of buckling modes to compute.

analyzeLoadCombinations(combContainer, setCalc, solutionProcedureType=<class 'solution.predefined_solutions.SpectraLinearBucklingAnalysis'>, constrainedNodeSet=None, bucklingMembers=None)
Analize the given load combinations and write internal forces,

displacements, etc. in temporary files for later use.

Parameters
  • combContainer – load combination container.

  • setCalc – set of entities for which the verification is going to be performed

  • solutionProcedureType – type of the solution strategy to solve the finite element problem.

  • constrainedNodeSet – constrained nodes (defaults to None)

  • bucklingMembers – list of members whose buckling reduction factors need to be updated after each commit (defaults to None)

check(setCalc, crossSections, controller, appendToResFile='N', listFile='N', calcMeanCF='N', threeDim=True)

Perform buckling limit state checking.

Parameters
  • setCalc – set of elements to be checked (defaults to ‘None’ which means that all the elements in the file of internal forces results are analyzed)

  • crossSections – cross sections on each element.

  • controller – object that controls the limit state checking.

  • appendToResFile – ‘Yes’,’Y’,’y’,.., if results are appended to existing file of results (defaults to ‘N’)

  • listFile – ‘Yes’,’Y’,’y’,.., if latex listing file of results is desired to be generated (defaults to ‘N’)

  • calcMeanCF – ‘Yes’,’Y’,’y’,.., if average capacity factor is meant to be calculated (defaults to ‘N’)

  • threeDim – true if it’s 3D (Fx,Fy,Fz,Mx,My,Mz) false if it’s 2D (Fx,Fy,Mz).

getResultsDict()

Build a dictionary containing all the analysis results.

prepareResultsDictionaries()

Prepare the dictionaries to store the results of the analysis.

readControlVars(modelSpace)

Read the control vars associated with this limit state.

Parameters

modelSpace – PredefinedSpace object used to create the FE model (see predefined_spaces.py).

Returns

number of properties read.

updateResults(combName, calcSet, constrainedNodes=None)
Append the results of the current analysis to the results

dictionaries.

Parameters
  • combName – load combination corresponding to the current analysis.

  • setCalc – set of entities for which the verification is going to be performed.

  • constrainedNodes – constrained nodes (defaults to None)

writeAnalysisResults()

Write the analysis results.

class postprocess.limit_state_data.CrackControlRCLimitStateData(limitStateLabel, outputDataBaseFileName, designSituations)

Bases: postprocess.limit_state_data.SLS_LimitStateData

Reinforced concrete crack control limit state data base class.

check(setCalc, crossSections, controller, appendToResFile='N', listFile='N', calcMeanCF='N', threeDim=True)

Perform limit state checking.

Parameters
  • setCalc – set of elements to be checked (defaults to ‘None’ which means that all the elements in the file of internal forces results are analyzed)

  • crossSections – cross sections on each element.

  • controller – object that controls the limit state checking.

  • appendToResFile – ‘Yes’,’Y’,’y’,.., if results are appended to existing file of results (defaults to ‘N’)

  • listFile – ‘Yes’,’Y’,’y’,.., if latex listing file of results is desired to be generated (defaults to ‘N’)

  • calcMeanCF – ‘Yes’,’Y’,’y’,.., if average capacity factor is meant to be calculated (defaults to ‘N’)

  • threeDim – true if it’s 3D (Fx,Fy,Fz,Mx,My,Mz) false if it’s 2D (Fx,Fy,Mz).

class postprocess.limit_state_data.CrossSectionInternalForces(idComb=None, tagElem=None, idSection=None, N=0.0, Vy=0.0, Vz=0.0, T=0.0, My=0.0, Mz=0.0)

Bases: materials.sections.internal_forces.CrossSectionInternalForces

Definition of the internal forces on a 3D section (6 degrees

of freedom) in a finite element.

Variables
  • idComb – identifier of the combination to which the internal forces are due.

  • tagElem – identifier of the finite element.

  • idSection – identifier of the section in the element.

  • vonMisesStressId – identifier of the Von Mises stress to read (see NDMaterial and MembranePlateFiberSection).

getCopy()

Return a copy of this object.

getDict()

returns a dictionary whith the values of the internal forces.

setFromDict(dct)

Sets the internal forces from the dictionary argument.

class postprocess.limit_state_data.FatigueResistanceRCLimitStateData(designSituations=['uls_fatigue'])

Bases: postprocess.limit_state_data.ULS_LimitStateData

Reinforced concrete shear resistance limit state data.

class postprocess.limit_state_data.FreqLoadsCrackControlRCLimitStateData(designSituations=['sls_frequent'])

Bases: postprocess.limit_state_data.CrackControlRCLimitStateData

Reinforced concrete crack control under frequent loads limit state data.

readControlVars(modelSpace)

Read the control vars associated with this limit state.

Parameters

modelSpace – PredefinedSpace object used to create the FE model (see predefined_spaces.py).

Returns

number of properties read.

class postprocess.limit_state_data.FreqLoadsDisplacementControlLimitStateData(designSituations=['sls_frequent'])

Bases: postprocess.limit_state_data.SLS_LimitStateData

Displacement control under frequent loads limit state data.

check(reinfConcreteSections)

Checking of displacements under frequent loads in serviceability limit states (see self.dumpCombinations).

Parameters

reinfConcreteSections – Reinforced concrete sections on each element.

class postprocess.limit_state_data.GaussPointStresses(idComb=None, tagElem=None, idGaussPoint=None, sigma_11=0.0, sigma_12=0.0, sigma_13=0.0, sigma_22=0.0, sigma_23=0.0, sigma_33=0.0)

Bases: materials.stresses.Stresses3D

Definition of the stresses in Gauss point of a 2D element

Variables
  • idComb – identifier of the combination to which the stresses are due.

  • tagElem – identifier of the finite element.

  • idGaussPoint – identifier of the section in the element.

  • vonMisesStressId – identifier of the Von Mises stress to read (see NDMaterial and MembranePlateFiberSection).

getCopy()

Return a copy of this object.

getDict()

returns a dictionary whith the values of the internal forces.

setFromDict(dct)

Sets the internal forces from the dictionary argument.

class postprocess.limit_state_data.LimitStateData(limitStateLabel, outputDataBaseFileName, designSituations, woodArmerAlsoForAxialForces=True, cfg=None)

Bases: object

Data used when checking limit states.

Variables
  • label – limit state check label; Something like “Fatigue” or “CrackControl”.

  • outputDataBaseFileName – name (whithout extension) of the file that contains the results to display.

  • designSituations – design situations that will be checked; i. e. uls_permanent, sls_quasi-permanent, sls_frequent, sls_rare, uls_earthquake, etc.

  • woodArmerAlsoForAxialForces – if true, use Wood-Armer method for both axial and bending internal forces otherwise, use it only for bending moments.

analyzeLoadCombinations(combContainer, setCalc, solutionProcedureType=<class 'solution.predefined_solutions.SimpleStaticLinear'>, constrainedNodeSet=None, bucklingMembers=None)
Analize the given load combinations and write internal forces,

displacements, etc. in temporary files for later use.

Parameters
  • combContainer – load combination container.

  • setCalc – set of entities for which the verification is going to be performed

  • solutionProcedureType – type of the solution strategy to solve the finite element problem.

  • constrainedNodeSet – constrained nodes (defaults to None)

  • bucklingMembers – list of members whose buckling reduction factors need to be updated after each commit (defaults to None)

createOutputFiles()

Create the internal forces and displacement output files.

dumpCombinations(combContainer, loadCombinations)

Load into the solver the combinations needed for this limit state.

Parameters
  • combContainer – container with the definition of the different combination families (ULS, fatigue, SLS,…) see actions/combinations module.

  • loadCombinations – load combination handler inside the XC solver.

envConfig = None
getBucklingAnalysisResultsFileName()

Return the name of the file where results of the buckling analysis are stored.

getController(code_limit_state_checking)

Return a controller corresponding to this limit state.

Parameters

code_limit_state_checking – code used to check the limit state.

getCorrespondingLoadCombinations(combContainer)

Return the load combinations needed for this limit state.

Parameters

combContainer – container with the definition of the different combination families (ULS, fatigue, SLS,…) see actions/combinations module.

getCriticalLCombs(threshold)

Pick the load combinations for which the capacity factor exceeds the given threshold.

Returns a dictionary with the following keys: - limitStateName: label of the limit state in question - threshold: capacity factor’s threshold above which the load combinations are selected - nElems: number of elements in the limit state verification file. - sect1_critical_comb: dictionary of key:value pairs, where keys are the name of the

load combination and its value is the percentage of elements for which the threshold is exceeded (for section 1 of the elements)

  • sect2_critical_comb: same as sect1_critical_comb in the case of element’s section 2.

  • critical_comb_names: list with the names of all the critical combinations

getDisplacementsDict(nmbComb, nodes)

Creates a dictionary with the displacements of the given nodes.

Parameters
  • nmbComb – combination name.

  • nodes – node set.

getDisplacementsFileName()

Return the file name to read: combination name, node number and displacements (ux,uy,uz,rotX,rotY,rotZ).

getDisplacementsResultsPath()

Return the file name to read: combination name, node number and displacements (ux,uy,uz,rotX,rotY,rotZ).

getFullVerifPath()

Return the full path for the limit state checking files.

getInternalForcesDict(nmbComb, elems)

Creates a dictionary with the element’s internal forces.

Parameters
  • nmbComb – combination name.

  • elems – element set.

getInternalForcesFileName()

Return the name of the file where internal forces are stored.

getInternalForcesResultsPath()

Return the directory where internal forces are stored.

getInternalForcesSubset(elementsOfInterestTags)
Return a dictionary containing the internal forces for the given

elements.

Parameters

elementsOfInterestTags – identifiers of the elements of interest.

getInternalForcesTuple(setCalc)
Read the element tags, load combinations identifiers and internal

forces for the elements in the given set and return them in a tuple: (eTags, loadCombinations, internalForces).

Parameters

setCalc – elements to read internal forces for.

getLastCalculationTime()

Return the time of last modification of the internal forces file.

getModesDict(nmbComb, xcSet, eigenvectorNormThreshold=0.001)

Creates a dictionary with the modes of the given nodes.

Parameters
  • nmbComb – combination name.

  • xcSet – set containing the nodes to export the modes on.

  • eigenvectorNormThreshold – if the node eigenvector has a norm smaller than this threshold it is considered null.

getOutputDataBaseFileName()

Return the output file name without extension.

getOutputDataFileName()

Return the Python executable file name.

getReactionsDict(nmbComb, constrainedNodes)

Creates a dictionary with the element’s internal forces.

Parameters
  • nmbComb – combination name.

  • constrainedNodes – constrainedNodes.

getReactionsFileName()

Return the name of the file where reactions are stored.

getReactionsResultsPath()

Return the directory where reactions are stored.

static loadPickleObject(objName)

Read a Python object from a pickle file.

prepareResultsDictionaries()

Prepare the dictionaries to store the results of the analysis.

readControlVars(modelSpace)

Read the control vars associated with this limit state.

Parameters

modelSpace – PredefinedSpace object used to create the FE model (see predefined_spaces.py).

Returns

number of properties read.

readInternalForces(setCalc)

Read the internal forces for the elements in the set argument.

Parameters

setCalc – elements to read internal forces for.

runChecking(outputCfg, sections=['Sect1', 'Sect2'])

This method reads, for the elements in setCalc, the internal forces previously calculated and saved in the corresponding file. Using the ‘initControlVars’ and ‘updateEfficiencyForSet’ methods of the controller, the appropriate attributes are assigned to the elements and the associated limit state verification is run. The results are written to a file in order to be displayed or listed.

Parameters
  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to the result file [defatults to ‘N’], generation or not of list file [defatults to ‘N’, …)

  • sections – names of the sections to write the output for.

saveAll(combContainer, setCalc, solutionProcedureType=<class 'solution.predefined_solutions.SimpleStaticLinear'>, constrainedNodeSet=None, bucklingMembers=None)

Write internal forces, displacements, .., for each combination

Parameters
  • combContainer – load combination container.

  • setCalc – set of entities for which the verification is going to be performed

  • solutionProcedureType – type of the solution strategy to solve the finite element problem.

  • constrainedNodeSet – constrained nodes (defaults to None)

  • bucklingMembers – list of members whose buckling reduction factors need to be updated after each commit (defaults to None)

static setEnvConfig(cfg)

Set configuration of XC environment variables.

Parameters

cfg – configuration of XC environment variables.

updateResults(combName, calcSet, constrainedNodes=None)
Append the results of the current analysis to the results

dictionaries.

Parameters
  • combName – load combination corresponding to the current analysis.

  • setCalc – set of entities for which the verification is going to be performed.

  • constrainedNodes – constrained nodes (defaults to None)

writeAnalysisResults()

Write the given analysis results in the corresponding results files.

writeDisplacements()

Write the displacements.

writeDisplacementsLegacy(combNm, nodSet)
Writes the resuls of displacements in a load combination

and set of nodes given as parameters

Parameters
  • combNM – name of the load combination

  • nodSet – set of nodes

writeInternalForces()

Write the internal forces results.

writeReactions()

Write the reactions.

class postprocess.limit_state_data.NormalStressesRCLimitStateData(designSituations=['uls_permanent', 'uls_accidental', 'uls_earthquake'])

Bases: postprocess.limit_state_data.ULS_LimitStateData

Reinforced concrete normal stresses data for limit state checking.

check(setCalc, crossSections, controller, appendToResFile='N', listFile='N', calcMeanCF='N', threeDim=True)

Perform limit state checking.

Parameters
  • setCalc – set of elements to be checked (defaults to ‘None’ which means that all the elements in the file of internal forces results are analyzed)

  • crossSections – cross sections on each element.

  • controller – object that controls the limit state checking.

  • appendToResFile – ‘Yes’,’Y’,’y’,.., if results are appended to existing file of results (defaults to ‘N’)

  • listFile – ‘Yes’,’Y’,’y’,.., if latex listing file of results is desired to be generated (defaults to ‘N’)

  • calcMeanCF – ‘Yes’,’Y’,’y’,.., if average capacity factor is meant to be calculated (defaults to ‘N’)

  • threeDim – true if it’s 3D (Fx,Fy,Fz,Mx,My,Mz) false if it’s 2D (Fx,Fy,Mz).

readControlVars(modelSpace)

Read the control vars associated with this limit state.

Parameters

modelSpace – PredefinedSpace object used to create the FE model (see predefined_spaces.py).

Returns

number of properties read.

class postprocess.limit_state_data.NormalStressesSteelLimitStateData(designSituations=['uls_permanent', 'uls_accidental', 'uls_earthquake'])

Bases: postprocess.limit_state_data.ULS_LimitStateData

Steel normal stresses data for limit state checking.

check(setCalc, controller, appendToResFile='N', listFile='N', calcMeanCF='N')

Perform limit state checking.

Parameters
  • setCalc – set of elements to be checked (defaults to ‘None’ which means that all the elements in the file of internal forces results are analyzed)

  • controller – object that controls the limit state checking.

  • appendToResFile – ‘Yes’,’Y’,’y’,.., if results are appended to existing file of results (defaults to ‘N’)

  • listFile – ‘Yes’,’Y’,’y’,.., if latex listing file of results is desired to be generated (defaults to ‘N’)

  • calcMeanCF – ‘Yes’,’Y’,’y’,.., if average capacity factor is meant to be calculated (defaults to ‘N’)

readControlVars(modelSpace)

Read the control vars associated with this limit state.

Parameters

modelSpace – PredefinedSpace object used to create the FE model (see predefined_spaces.py).

Returns

number of properties read.

class postprocess.limit_state_data.QPLoadsCrackControlRCLimitStateData(designSituations=['sls_quasi-permanent'])

Bases: postprocess.limit_state_data.CrackControlRCLimitStateData

Reinforced concrete crack control under quasi-permanent loads limit state data.

readControlVars(modelSpace)

Read the control vars associated with this limit state.

Parameters

modelSpace – PredefinedSpace object used to create the FE model (see predefined_spaces.py).

Returns

number of properties read.

class postprocess.limit_state_data.RareLoadsCrackControlRCLimitStateData(designSituations=['sls_rare'])

Bases: postprocess.limit_state_data.CrackControlRCLimitStateData

Reinforced concrete crack control under rare loads limit state data.

readControlVars(modelSpace)

Read the control vars associated with this limit state.

Parameters

modelSpace – PredefinedSpace object used to create the FE model (see predefined_spaces.py).

Returns

number of properties read.

class postprocess.limit_state_data.SLS_LimitStateData(limitStateLabel, outputDataBaseFileName, designSituations)

Bases: postprocess.limit_state_data.LimitStateData

Serviceability limit state data for frequent load combinations.

check(crossSections, outputCfg=<postprocess.limit_state_data.VerifOutVars object>, threeDim=True)
Checking of crack width under frequent loads in serviceability

limit states (see self.dumpCombinations).

Parameters
  • crossSections – cross sections on each element.

  • outputCfg – instance of class VerifOutVars which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to file, generation or not of lists, …)

  • threeDim – true if it’s 3D (Fx,Fy,Fz,Mx,My,Mz) false if it’s 2D (Fx,Fy,Mz).

getController(code_limit_state_checking)

Return a controller corresponding to this limit state.

Parameters

code_limit_state_checking – code used to check the limit state.

class postprocess.limit_state_data.ShearResistanceRCLimitStateData(designSituations=['uls_permanent', 'uls_accidental', 'uls_earthquake'])

Bases: postprocess.limit_state_data.ULS_LimitStateData

Reinforced concrete shear resistance limit state data.

check(setCalc, crossSections, controller, appendToResFile='N', listFile='N', calcMeanCF='N', threeDim=True)

Perform limit state checking.

Parameters
  • setCalc – set of elements to be checked (defaults to ‘None’ which means that all the elements in the file of internal forces results are analyzed)

  • crossSections – cross sections on each element.

  • controller – object that controls the limit state checking.

  • appendToResFile – ‘Yes’,’Y’,’y’,.., if results are appended to existing file of results (defaults to ‘N’)

  • listFile – ‘Yes’,’Y’,’y’,.., if latex listing file of results is desired to be generated (defaults to ‘N’)

  • calcMeanCF – ‘Yes’,’Y’,’y’,.., if average capacity factor is meant to be calculated (defaults to ‘N’)

  • threeDim – true if it’s 3D (Fx,Fy,Fz,Mx,My,Mz) false if it’s 2D (Fx,Fy,Mz).

readControlVars(modelSpace)

Read the control vars associated with this limit state.

Parameters

modelSpace – PredefinedSpace object used to create the FE model (see predefined_spaces.py).

Returns

number of properties read.

class postprocess.limit_state_data.ShearResistanceSteelLimitStateData(designSituations=['uls_permanent', 'uls_accidental', 'uls_earthquake'])

Bases: postprocess.limit_state_data.ULS_LimitStateData

Reinforced concrete shear resistance limit state data.

check(setCalc, controller, appendToResFile='N', listFile='N', calcMeanCF='N')

Perform limit state checking.

Parameters
  • setCalc – set of elements to be checked (defaults to ‘None’ which means that all the elements in the file of internal forces results are analyzed)

  • controller – object that controls the limit state checking.

  • appendToResFile – ‘Yes’,’Y’,’y’,.., if results are appended to existing file of results (defaults to ‘N’)

  • listFile – ‘Yes’,’Y’,’y’,.., if latex listing file of results is desired to be generated (defaults to ‘N’)

  • calcMeanCF – ‘Yes’,’Y’,’y’,.., if average capacity factor is meant to be calculated (defaults to ‘N’)

readControlVars(modelSpace)

Read the control vars associated with this limit state.

Parameters

modelSpace – PredefinedSpace object used to create the FE model (see predefined_spaces.py).

Returns

number of properties read.

class postprocess.limit_state_data.TorsionResistanceRCLimitStateData(designSituations=['uls_permanent', 'uls_accidental', 'uls_earthquake'])

Bases: postprocess.limit_state_data.ULS_LimitStateData

Reinforced concrete torsion strength limit state data.

check(setCalc, crossSections, controller, appendToResFile='N', listFile='N', calcMeanCF='N', threeDim=True)

Perform limit state checking.

Parameters
  • setCalc – set of elements to be checked (defaults to ‘None’ which means that all the elements in the file of internal forces results are analyzed)

  • crossSections – cross sections on each element.

  • controller – object that controls the limit state checking.

  • appendToResFile – ‘Yes’,’Y’,’y’,.., if results are appended to existing file of results (defaults to ‘N’)

  • listFile – ‘Yes’,’Y’,’y’,.., if latex listing file of results is desired to be generated (defaults to ‘N’)

  • calcMeanCF – ‘Yes’,’Y’,’y’,.., if average capacity factor is meant to be calculated (defaults to ‘N’)

  • threeDim – true if it’s 3D (Fx,Fy,Fz,Mx,My,Mz) false if it’s 2D (Fx,Fy,Mz).

readControlVars(modelSpace)

Read the control vars associated with this limit state.

Parameters

modelSpace – PredefinedSpace object used to create the FE model (see predefined_spaces.py).

Returns

number of properties read.

class postprocess.limit_state_data.ULS_LimitStateData(limitStateLabel, outputDataBaseFileName, designSituations)

Bases: postprocess.limit_state_data.LimitStateData

Ultimate limit state data for permanent or transient combinations.

check(crossSections, outputCfg=<postprocess.limit_state_data.VerifOutVars object>, threeDim=True)

Checking of ultimate limit state (see self.dumpCombinations).

Parameters
  • crossSections – cross sections on each element.

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to a file, generation or not of lists, …)

  • threeDim – true if it’s 3D (Fx,Fy,Fz,Mx,My,Mz) false if it’s 2D (Fx,Fy,Mz).

class postprocess.limit_state_data.VerifOutVars(setCalc=None, appendToResFile='N', listFile='N', calcMeanCF='N', controller=None, outputDataBaseFileName=None)

Bases: object

Variables that control the output of limit state verifications.

Variables
  • setCalc – set of elements to be checked (defaults to ‘None’ which means that all the elements in the file of internal forces results are analyzed)

  • appendToResFile – ‘Yes’,’Y’,’y’,.., if results are appended to existing file of results (defaults to ‘N’)

  • listFile – ‘Yes’,’Y’,’y’,.., if latex listing file of results is desired to be generated (defaults to ‘N’)

  • calcMeanCF – ‘Yes’,’Y’,’y’,.., if average capacity factor is meant to be calculated (defaults to ‘N’)

  • controller – object that controls the limit state checking.

  • outputDataBaseFileName – file name for the file of files to write the output on.

getCalcSetElements(preprocessor)

Return the set of elements to be analyzed.

Parameters

preprocessor – pre-processor for the XC finite element problem.

runChecking(intForcCombFileName, sections)

Launch checking.

Parameters
  • intForcCombFileName – Name of the file containing the internal forces on the element sections.

  • sections – names of the sections to write the output for.

class postprocess.limit_state_data.VonMisesStressLimitStateData(vonMisesStressId='max_von_mises_stress', designSituations=['uls_permanent', 'uls_accidental', 'uls_earthquake'])

Bases: postprocess.limit_state_data.ULS_LimitStateData

Steel Von Mises stress limit state data.

Variables

vonMisesStressId – identifier of the Von Mises stress to read (see NDMaterial and MembranePlateFiberSection).

check(setCalc, controller, appendToResFile='N', listFile='N', calcMeanCF='N')

Perform limit state checking.

Parameters
  • setCalc – set of elements to be checked (defaults to ‘None’ which means that all the elements in the file of internal forces results are analyzed)

  • controller – object that controls the limit state checking.

  • appendToResFile – ‘Yes’,’Y’,’y’,.., if results are appended to existing file of results (defaults to ‘N’)

  • listFile – ‘Yes’,’Y’,’y’,.., if latex listing file of results is desired to be generated (defaults to ‘N’)

  • calcMeanCF – ‘Yes’,’Y’,’y’,.., if average capacity factor is meant to be calculated (defaults to ‘N’)

checkElements(elementsToCheck, outputCfg=<postprocess.limit_state_data.VerifOutVars object>)

Checking of fatigue under fatigue combinations loads in ultimate limit states (see self.dumpCombinations).

Parameters
  • elementsToCheck – elements to check.

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to a file, generation or not of lists, …)

getInternalForcesDict(nmbComb, elems)

Creates a dictionary with the element’s internal forces.

Parameters
  • nmbComb – combination name.

  • elems – element set.

readInternalForces(setCalc)

Read the internal forces for the elements in the set argument.

Parameters

setCalc – elements to read internal forces for.

runChecking(outputCfg)

This method reads, for the elements in setCalc, the internal forces previously calculated and saved in the corresponding file. Using the ‘initControlVars’ and ‘updateEfficiencyForSet’ methods of the controller, the appropriate attributes are assigned to the elements and the associated limit state verification is run. The results are written to a file in order to be displayed or listed.

Parameters

outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to the result file [defatults to ‘N’], generation or not of list file [defatults to ‘N’, …)

postprocess.limit_state_data.calc_max_compression_axial_forces(setCalc, intForcCombFileName, outputFileName)

Calculate maximum compression forces for the elements included in setCalc among the load combinations for which internal-force results are stored in intForcCombFileName. The maximum tension forces calculated are written to outputFileName file.

Parameters

setCalc – set of elements to be analyzed.

postprocess.limit_state_data.calc_max_tension_axial_forces(setCalc, intForcCombFileName, outputFileName)

Calculate maximum tension forces for the elements included in setCalc among the load combinations for which internal-force results are stored in intForcCombFileName. The maximum tension forces calculated are written to outputFileName file.

Parameters

setCalc – set of elements to be analyzed.

postprocess.limit_state_data.get_cross_section_internal_forces(internalForces, idComb, tagElem, key, vonMisesStressId)
Return the CrossSectionInternalForces object containing the

internal forces in the given dictionary.

Parameters
  • internalForces – Python dictionary containing the values for the internal forces.

  • idComb – identifier of the load combination.

  • tagElem – identifier of the finite element.

  • key – identifier of the section in the element.

  • vonMisesStressId – identifier of the Von Mises stress to read (see NDMaterial and MembranePlateFiberSection).

postprocess.limit_state_data.get_gauss_point_stresses(stresses, idComb, tagElem, key, vonMisesStressId)
Return the CrossSectionInternalForces object containing the

internal forces in the given dictionary.

Parameters
  • stresses – Python dictionary containing the values for the stresses.

  • idComb – identifier of the load combination.

  • tagElem – identifier of the finite element.

  • key – identifier of the gauss point in the element.

  • vonMisesStressId – identifier of the Von Mises stress to read (see NDMaterial and MembranePlateFiberSection).

postprocess.limit_state_data.old_read_int_forces_file(intForcCombFileName, setCalc=None)

Extracts element and combination identifiers from the internal forces listing file. Return elementTags, idCombs and internal-forces values

Parameters
  • intForcCombFileName – name of the file containing the internal forces obtained for each element for the combinations analyzed

  • setCalc – set of elements to be analyzed (defaults to None which means that all the elements in the file of internal forces results are analyzed)

postprocess.limit_state_data.read_int_forces_dict(intForcCombFileName, setCalc=None, vonMisesStressId='max_von_mises_stress')

Extracts element and combination identifiers from the internal forces JSON file. Return elementTags, idCombs and internal-forces values

Parameters
  • intForcCombFileName – name of the file containing the internal forces obtained for each element for the combinations analyzed

  • setCalc – set of elements to be analyzed (defaults to None which means that all the elements in the file of internal forces results are analyzed)

  • vonMisesStressId – identifier of the Von Mises stress to read (see NDMaterial and MembranePlateFiberSection).

postprocess.limit_state_data.read_internal_forces_file(intForcCombFileName, setCalc=None, vonMisesStressId='max_von_mises_stress')

Extracts element and combination identifiers from the internal forces listing file. Return elementTags, idCombs and internal-forces values

Parameters
  • intForcCombFileName – name of the file containing the internal forces obtained for each element for the combinations analyzed

  • setCalc – set of elements to be analyzed (defaults to None which means that all the elements in the file of internal forces results are analyzed)

  • vonMisesStressId – identifier of the Von Mises stress to read (see NDMaterial and MembranePlateFiberSection).

postprocess.limit_state_data.read_stresses_dict(stressesCombFileName, setCalc=None, vonMisesStressId='max_von_mises_stress')

Extracts element and combination identifiers from the internal forces JSON file. Return elementTags, idCombs and stresses values

Parameters
  • stressesCombFileName – name of the file containing the stresses obtained for each element for the combinations analyzed

  • setCalc – set of elements to be analyzed (defaults to None which means that all the elements in the file of internal forces results are analyzed)

  • vonMisesStressId – identifier of the Von Mises stress to read (see NDMaterial and MembranePlateFiberSection).

postprocess.limit_state_data.string_el_max_axial_force(element, section, setName, combName, axialForc)

MEDMEM to XC variables

Phantom model

class postprocess.phantom_model.PhantomModel(preprocessor, sectionDistribution)

Bases: object

Model made of ZeroLengthSection elements that is used only for checking limit states i.e. for reinforced concrete sections.

This kind of phantom model is needed when the model that we use to check limit states is different from the model that we use for the analysis. A typical example:

  • The internal forces under different load combinations are obtained using a linear elastic model for the materials.

  • A “phantom model” with a more realistic representation of the cross sections (fiber models,…) is used for limit state checking at cross section level (crack control, shear,…).

build(intForcItems, outputCfg, thresholdCF=1.0)

Builds the phantom model from the data read from the file.

Parameters
  • intForcItems – tuple containing the element tags, the identifiers of the load combinations and the values of the internal forces.

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to a file, generation or not of lists, …)

  • thresholdCF – value of the capacity factor above which the section will be considered exhausted.

check(controller)

Runs the analysis (linear) and checking of combinations passed as parameters

Parameters

controller – object that controls limit state in elements.

computeExhaustedSections(intForcItems, outputCfg, thresholdCF=1.0)
Compute the elements for which the capacity factor is greater than 1.0,

so they will cause the solver crash when performing a non-linear analysis.

Parameters
  • intForcItems – tuple containing the element tags, the identifiers of the load combinations and the values of the internal forces.

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to a file, generation or not of lists, …)

  • thresholdCF – value of the capacity factor above which the section will be considered exhausted.

createElements(intForcItems, outputCfg, exhaustedSections)

Creates the phantom model elements from the data read on the file.

Parameters
  • intForcItems – tuple containing the element tags, the identifiers of the load combinations and the values of the internal forces.

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to a file, generation or not of lists, …)

  • exhaustedSections – dictionary containing the sections that will be exhausted (and will make the solver to crash) if a non-linear analysis is performed.

createLoads(exhaustedSections)

Creates the loads from the data read from the file.

Parameters

exhaustedSections – dictionary containing the sections that will be exhausted (and will make the solver to crash) if a non-linear analysis is performed.

createPhantomElement(masterElementId, masterElementDimension, sectionName, sectionDefinition, sectionIndex, interactionDiagram, fakeSection)

Creates a phantom element (that represents a section to check)

Parameters
  • masterElementId – identifier of the master element (element in the “true” model associated with the phantom element to be created).

  • masterElementDimension – dimension (1, 2 or 3) of the master element.

  • sectionName – name of the 3D fiber section to create the zero-length phantom element (default material)

  • idSection – name of the section assigned to the phantom element (the section to check) -sectionName-.

  • sectionIndex – index of the section in the “true” model element -sectionIndex-. To be renamed as sectionIndex.

  • interactionDiagram – interaction diagram that corresponds to the section to check.

  • fakeSection – if True (default value) generates a fake section of type ‘xc.ElasticShearSection3d’, if False, generates a true fiber model of the section (xc.FiberSectionShear3d)

getControlVarsDict(outputCfg)

Return a dictionary with the values of the control variables for each element

Parameters

outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (append or not the results to a file, generation or not of lists, …)

runChecking(intForcItems, outputCfg)

Run the analysis, check the results and write them into a file

Parameters
  • intForcItems – tuple containing the element tags, the identifiers of the load combinations and the values of the internal forces.

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to a file, generation or not of lists, …)

setupForElementsAndCombinations(intForcItems)
Extracts element and combination identifiers from the internal

forces listing file.

Parameters

intForcItems – tuple containing the element tags, the identifiers of the load combinations and the values of the internal forces.

Statistics properties

Maximum, minimum, average, … of some property.

postprocess.prop_statistics.getItemWithMaxProp(iterable, attrName, argv='')

Return item which maximizes property named as indicated in attrName

postprocess.prop_statistics.getItemWithMinProp(iterable, attrName, argv='')

Return item which minimizes property named as indicated in attrName

postprocess.prop_statistics.rec_getattr(obj, attr, argv='')

Get object’s attribute. May use dot notation.

>>> class C(object): pass
>>> a = C()
>>> a.b = C()
>>> a.b.c = 4
>>> rec_getattr(a, 'b.c')
4
postprocess.prop_statistics.rec_setattr(obj, attr, value)

Set object’s attribute. May use dot notation.

>>> class C(object): pass
>>> a = C()
>>> a.b = C()
>>> a.b.c = 4
>>> rec_setattr(a, 'b.c', 2)
>>> a.b.c
2

RC material distribution

Spatial distribution of reinforced concrete material.

class postprocess.RC_material_distribution.RCMaterialDistribution

Bases: object

Spatial distribution of reinforced concrete material (RC sections

distribution over the elements).

It refers to the reinforced concrete sections associated with the element (i.e. for shell elements we typically define two RC sections, one for each main direction; in the case of beam elements the most common way is to define RC sections in the front and back ends of the elements)

Variables
  • sectionDefinition – Container with the section definitions (see RC_sections_container module).

  • sectionDistribution – dictionary that stores a section name(s) for each element number. This way it defines a spatial distribution of the sections over the elements.

  • elementSetNames – list of element sets with an assigned section.

assign(elemSet, setRCSects)

Assigns the sections names to the elements of the set.

Parameters
  • elemSet – set of elements that receive the section name property.

  • setRCSects – RC section definition, name, concrete type, rebar positions,…

assignFromElementProperties(elemSet)
Creates the section materials from the element properties

and assigns them to the elements of the argument set .

Parameters

elemSet – set of elements that receive the section names property.

check(limitStateData, matDiagType, outputCfg, threeDim=True)

Checking of normal stresses in ultimate limit states (see self.dumpCombinations).

Parameters
  • limitStateData – object that contains the name of the file containing the internal forces obtained for each element for the combinations analyzed and the controller to use for the checking.

  • matDiagType – type of the material diagram (d: design, k: characteristic).

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to a file, generation or not of lists, …)

  • threeDim – true if it’s 3D (Fx,Fy,Fz,Mx,My,Mz) false if it’s 2D (Fx,Fy,Mz).

clearRCsections()

Clear previously defined RC sections.

dump()

Writes this object in a pickle file.

getDict()

Return a dictionary containing the object data.

getElementSet(preprocessor)

Returns an XC set that contains all the elements with an assigned section.

getMasterElementDimension(tagElem)
Return the dimension (1, 2 or 3) of the element whose tag is being passed

as a parameter.

Parameters

tagElem – master element identifier.

getSectionDefinition(sectionName)

Returns the section definition which has the name being passed as a parameter.

getSectionDefinitionsForElement(tagElem)

Returns the section names for the element which tag is being passed as a parameter.

getSectionNames(elementTags)
Returns the section names for the elements whose tags are being

passed as a parameter.

Parameters

elementTags – list of element identifiers.

getSectionNamesForElement(elementTag)
Returns the section names for the element whose tag is being passed

as a parameter.

Parameters

elementTag – master element identifier.

internalForcesVerification2D(limitStateData, matDiagType, outputCfg)

Limit state verification based on internal force (Fx,Fy,Mz) values.

Parameters
  • limitStateData – object that contains the name of the file containing the internal forces obtained for each element for the combinations analyzed and the controller to use for the checking.

  • matDiagType – type of the material diagram (d: design, k: characteristic).

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to a file, generation or not of lists, …)

internalForcesVerification3D(limitStateData, matDiagType, outputCfg)

Limit state verification based on internal force (Fx,Fy,Fz,Mx,My,Mz) values.

Parameters
  • limitStateData – object that contains the name of the file containing the internal forces obtained for each element for the combinations analyzed and the controller to use for the checking.

  • matDiagType – type of the material diagram (d: design, k: characteristic).

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to a file, generation or not of lists, …)

latexReport(os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, graphicWidth='70mm', outputPath=None, includeGraphicsPath=None, preprocessor=None, matDiagType='k')

Write a report of the object in LaTeX format.

Parameters
  • os – output stream.

  • graphicWidth – width for the cross-section graphic.

  • outputPath – directory to write the section plot into.

  • includeGraphicsPath – directory to use in the latex includegraphics command.

  • preprocessor – pre-processor of the FE problem.

  • matDiagType – diagram type; if “k” use the diagram corresponding to characteristic values of the material, if “d” use the design values one.

load()

Reads this object from a pickle file.

mapSectionsFileName = './mapSectionsReinforcement.pkl'
classmethod newFromDict(dct=None)

Builds a new object from the data in the given dictionary.

Parameters
  • cls – class of the object itself.

  • dct – dictionary contaning the data.

pdfReport(outputFileName: Optional[str] = None, graphicWidth='70mm', showPDF=False, keepPDF=True, preprocessor=None, matDiagType='k')

Write a report of the object in LaTeX format.

Parameters
  • outputFileName – name of the output file.

  • graphicWidth – width for the cross-section graphic.

  • showPDF – if true display the PDF output on the screen.

  • keepPDF – if true don’t remove the PDF output.

  • preprocessor – pre-processor of the FE problem.

  • matDiagType – diagram type; if “k” use the diagram corresponding to characteristic values of the material, if “d” use the design values one.

readFromJSON(fileName=None, preprocessor=None)

Writes object data from a JSON file.

report(os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, indentation='')

Get a report of the object contents.

runChecking(limitStateData, matDiagType, threeDim=True, outputCfg=<postprocess.limit_state_data.VerifOutVars object>)

Creates the phantom model and runs the verification on it.

Parameters
  • limitStateData – object that contains the name of the file containing the internal forces obtained for each element for the combinations analyzed and the controller to use for the checking.

  • matDiagType – type of the material diagram (d: design, k: characteristic).

  • threeDim – true if it’s 3D (Fx,Fy,Fz,Mx,My,Mz) false if it’s 2D (Fx,Fy,Mz).

  • outputCfg – instance of class ‘VerifOutVars’ which defines the variables that control the output of the checking (set of elements to be analyzed, append or not the results to a file, generation or not of lists, …)

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

writeToJSON(fileName=None)

Writes this object in a JSON file.

postprocess.RC_material_distribution.loadRCMaterialDistribution()

Load the reinforced concrete sections on each element from file.

Recorders

postprocess.recorders.installNodeDisplacementRecorder(recorderName, nodeSet)

Utils display

class postprocess.utils_display.FigureBase(pLabel, limitStateLabel, figDescr, reinfDescr=None, units=None, sz='90mm')

Bases: object

Base of the objects used to create figures.

Variables

pLabel – part label; something like ‘wall’ or ‘2ndFloorDeck’

:ivar limitStateLabel; limit state check label; Something like “Fatigue” or “CrackControl” :ivar figDescr: figure description; text to insert as caption in the figure file and int the LaTeX file. :ivar units: units displayed; something like ‘[MPa]’ or ‘radians’… :ivar reinfDescr: reinforcement description; sSomething like “horizontal reinforcement.” :ivar sz: LaTeX size for the figure.

getCaption()

Return the figure caption.

getFileName()

Return the file name to store the bitmap.

insertIntoLatex(fichLatexFigs, fichLatexList, fichFig, labelText)
Parameters
  • fichLatexFigs – latex file to insert graphic into

  • fichFig – name of the file that contains the graphic (complete path without extension).

class postprocess.utils_display.FigureDefinition(pLabel, limitStateLabel, attrName, argument, figDescr, reinfDescr=None, units=None, sz='90mm')

Bases: postprocess.utils_display.SlideDefinition

Definition of a figure.

Variables
  • attributeName – name of the attribute to display.

  • argument – argument for the attribute.

defField(xcSet)

Define field.

genGraphicFile(displaySettings, xcSet, graphFileName, convertToEPS=False)

Create a graphic file.

Parameters
  • displaySettings – variables that define the ouput device.

  • xcSet – set to display.

  • graphFileName – name of the graphic file.

  • convertToEPS – if true use ImageMagick convert to create a postrscript file.

class postprocess.utils_display.PartToDisplay(partName, surfaceList, reinforcementLabels)

Bases: object

display(preprocessor, tp, resultsToDisplay)

Generate an image for every result to display

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • tp – TakePhoto object to use to capture the image.

  • resultToDisplay – collection of results to be displayed.

getElementSet(preprocessor)

Return the elements contained in this object in a XC set.

Parameters

preprocessor – preprocessor of the finite element problem.

getElements()

Returns a list of the elements of this part.

getShortName()
class postprocess.utils_display.PartToDisplayContainer(lst)

Bases: dict

Parts to display in figures…

add(part)
display(preprocessor, tp, resultsToDisplay)

Display results for each part.

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • tp – TakePhoto object to use to capture the image.

  • resultToDisplay – collection of results to be displayed.

class postprocess.utils_display.SlideDefinition(pLabel, limitStateLabel, figDescr, reinfDescr=None, units=None, sz='90mm')

Bases: postprocess.utils_display.FigureBase

Slide definition.

Variables
  • field – field to display in the slide.

  • diagrams – list of diagrams to display in the slide.

genGraphicFile(displaySettings, xcSet, graphFileName, convertToEPS=False)

Create a graphic file.

Parameters
  • displaySettings – variables that define the ouput device.

  • xcSet – set to display.

  • graphFileName – name of the graphic file.

  • convertToEPS – if true use ImageMagick convert to create a postrscript file.

setupDiagrams()

Call addDiagram on each diagram of the list.

class postprocess.utils_display.TakePhotos(xcSet)

Bases: object

Generation of bitmaps with analysis and design results.

Variables
  • pthGraphOutput – path to the directory to put the graphics in.

  • pthTextOutput – path to the directory to put the texts in.

  • fichLatexFigs – Latex file to include figures (defaults to None).

  • fichLatexList – Latex file with figures list (defaults to None).

displayFigures(figDefinitionList, LatexFigsFilename, LatexListFilename)

Creates graphics files from figure definition list.

Parameters
  • nmbLstIss – name of the lists that contains the results to display.

  • LatexFilename – name of the LaTeX file to write the graphics on.

insertFigureLatex(figDef, conta, fichFig, labelText)
Parameters
  • fichLatexFigs – latex file to insert graphic into

  • fichFig – name of the file that contains the graphic (complete path without extension).

plotFigures(preprocessor, figDefinitionList, LatexFigsFilename, LatexListFilename)
postprocess.utils_display.convert_to_eps(fileName, epsFileName)

Uses ImageMagick convert command to create a postcript file.

Parameters
  • fileName – name of the graphic file to convert.

  • epsFileName – postscript file to create.

postprocess.utils_display.plotStressStrainFibSet(fiberSet, title, fileName=None, nContours=None, pointSize=50, fiberShape='o')

Represents graphically the cross-section current stresses and strains. The graphics are generated by a triangulation from the x,y coordinates of the fibers.

Parameters
  • fiberSet – set of fibers to be represented

  • title – general title for the graphic

  • fileName – name of the graphic file (defaults to None: no file generated)

  • nContours – number of contours to be generated . If nContours=0 or nContours=None, then each fiber is represented by a marker (defaults to None).

  • pointSize – size of the circles to represent each of the fibers in the set in the case that nContours=0 or nContours=None (defaults to 50)

  • fiberShape – marker to represent each fiber, in case nContours = 0 or None.e.g.: “o”->circle, “s”->square, “p”->pentagon (defaults to circle)

class postprocess.utils_display.setToDisplay(elSet, genDescr='', sectDescr=[])

Bases: object

Defines the description of a set of elements to be used in the graphics and reports associated with the calculation

Variables
  • elSet – set of elements

  • genDescr – general description

  • sectDescr – ordered list with the descriptions that apply to each of the sections that configures the element.