Materials with characteristic (K) and design (D) diagrams

MaterialWithDKDiagrams.py: materials with characteristic (K) and design (D) diagrams.

class materials.sections.material_with_DK_diagrams.MaterialWithDKDiagrams(matName)

Bases: object

Base class for materials with characteristic (K) and design (D) diagrams

Variables
  • materialName – name of the material.

  • nmbDiagK – name of the characteristic diagram.

  • matTagK – tag of the uniaxial material in the characteristic diagram.

  • materialDiagramK – characteristic stress-strain diagram.

  • nmbDiagD – name of the design diagram.

  • matTagD – tag of the uniaxial material in the design diagram.

  • materialDiagramD – design stress-strain diagram.

  • nmbDiagE – name of the elastic diagram.

  • matTagE – tag of the uniaxial material in the elastic diagram.

  • materialDiagramE – elastic stress-strain diagram.

getDiagD(preprocessor)
getDiagK(preprocessor)
getDict()

Return a dictionary with the values of the object members.

classmethod newFromDict(dct=None)

Builds a new object from the data in the given dictionary.

Parameters
  • cls – class of the object itself.

  • dct – dictionary contaning the data.

setFromDict(dct)

Set the member values from those in the given dictionary.

setupName(matName)

Material setup.

Parameters

matName – material name.

Moment-curvature diagram

Moment curvature diagram for a section.

materials.sections.moment_curvature_diagram.getMomentCurvatureDiagram3D(preprocessor, nmbSecc, esfAxil, maxK, numIncr)

Return the points of the moment curvature diagram of the section.

Parameters
  • nmbSecc – Section name.

  • esfAxil – Axial force over the section.

  • maxK – Maximum curvature to reach in the analysis.

  • numIncr – Number of increments.

Definition of elastic materials for elements

materials.sections.def_secc_aggregation.def_secc_aggregation2d(preprocessor, defSecc, defMat)

Definition of a elastic material-section for 2D elements

Parameters
  • preprocessor – preprocessor name

  • defSecc – object with the mechanical properties of the section (A, Iy, Iz, …)

  • defMat – object with the properties of the material (E, G)

materials.sections.def_secc_aggregation.def_secc_aggregation3d(preprocessor, defSecc, defMat)

Definition of a elastic material section for 3D elements

Parameters
  • preprocessor – preprocessor name

  • defSecc – object with the mechanical properties of the section (A, Iy, Iz, …)

  • defMat – object with the properties of the material (E, G)

Section properties

Calculation of cross-section mechanical properties (area, inertia,…).

class materials.sections.section_properties.CircularSection(name, Rext, Rint=0)

Bases: materials.sections.section_properties.SectionProperties

Geometric parameters of a circular or circular hollow section

Variables
  • Rext – external radius

  • Rint – internal radius (defaults to 0)

A()

Return cross-sectional area of the section

Iy()

Return second moment of area about the local y-axis

Iz()

Return second moment of area about the local z-axis

J()

Return torsional constant of the section

alphaY()

Return distortion coefficient with respect to local Y axis (see Oñate, Cálculo de estructuras por el MEF page 122)

alphaZ()

Return distortion coefficient with respect to local Z axis.

bCOG()

Return distance from the leftmost fiber to the center of gravity of the section.

getAverageDiameter()

Return the average radius.

getAverageRadius()

Return the average radius.

getContourPoints(nDiv=100)

Return the vertices approximating the contour of the circle.

getDiameter()

Return the external diameter.

getDict()

Put member values in a dictionary.

getExtRadius()

Return the external radius.

getExternalDiameter()

Return the external diameter.

getIntRadius()

Return the internal radius.

getInternalDiameter()

Return the internal diameter.

getJTorsion()

Return torsional constant of the section.

Reference: https://en.wikipedia.org/wiki/Torsion_constant#Circle

getShearStiffnessY(G)

Return the shear stiffness of the section.

getShearStiffnessZ(G)

Return the shear stiffness of the section.

getThickness()

Return the section thickness.

getTorsionalStiffness(G)

Return the torsional stiffness of the section.

getWarpingConstant()

Return the value of the section warping constant.

hCOG()

Return distance from the bottom fiber to the center of gravity of the section.

r = 0.0
setFromDict(dct)

Read member values from a dictionary.

Parameters

dct – Python dictionary containing the member values.

yMax()

Return the maximum distance from the section contour to the local Z axis.

zMax()

Return the maximum distance from the section contour to the local Y axis.

class materials.sections.section_properties.CompoundSection(name, section_list, Iw)

Bases: materials.sections.section_properties.SectionProperties

Compound section properties (area, moments of inertia,…)

Variables
  • section_list – list of sections.

  • Iw – warping constant of the compound section.

A()

cross-sectional area

Iy()

second moment of area about the local y-axis.

Iz()

second moment of area about the local z-axis (abstract method)

J()

torsional constant of the section.

alphaY()

return shear shape factor with respect to local y-axis

alphaZ()

return shear shape factor with respect to local z-axis

bCOG()

Return distance from the leftmost fiber to the center of gravity of the section.

draw(notes=None)

Draw the section contour using pyplot.

Parameters

notes – notes to insert in the plot.

getWarpingConstant()

Return the value of the section warping constant.

hCOG()

Return distance from the bottom fiber to the center of gravity of the section.

yCenterOfMass()

y coordinate of the center of mass.

yMax()

Return the maximum distance from the section contour to the local Z axis.

zCenterOfMass()

z coordinate of the center of mass.

zMax()

Return the maximum distance from the section contour to the local Y axis.

class materials.sections.section_properties.GenericSection(name, area, I_y, I_z, Jtors, W_y, W_z, alphY, alphZ, Iw=0.0)

Bases: materials.sections.section_properties.SectionProperties

Mechanical properties of generic section

Variables
  • area – cross-sectional area

  • Iy – second moment of area about the local y-axis

  • Iz – second moment of area about the local z-axis

  • Jtors – torsional constant of the section

  • Wy – section modulus with respect to local y-axis

  • Wz – section modulus with respect to local z-axis

  • alphY – shear shape factor with respect to local y-axis

  • alphZ – shear shape factor with respect to local z-axis

  • Iw – warping constant.

A()

Return cross-sectional area

Iy()

Return second moment of area about the local y-axis

Iz()

Return second moment of area about the local z-axis

J()

Return torsional constant of the section

Wyel()

Return section modulus with respect to local y-axis

Wzel()

Return section modulus with respect to local z-axis

alphaY()

Return shear shape factor with respect to local y-axis

alphaZ()

Return shear shape factor with respect to local z-axis

getWarpingConstant()

Return the value of the section warping constant.

yMax()

Return the maximum distance from the section contour to the local Z axis.

zMax()

Return the maximum distance from the section contour to the local Y axis.

class materials.sections.section_properties.GenericSection1D(name, area)

Bases: materials.sections.section_properties.SectionProperties

Mechanical properties of a generic section in a one-dimensional space.

Variables

area – cross-sectional area.

A()

Return cross-sectional area

class materials.sections.section_properties.GenericSection2D(name, area, I, W, alph)

Bases: materials.sections.section_properties.SectionProperties

Mechanical properties of a generic section in a two-dimensional space.

Variables
  • area – cross-sectional area.

  • I – second moment of area.

  • W – section modulus.

  • alph – shear shape factor.

A()

Return cross-sectional area

Iz()

Return second moment of area about the local z-axis

Wzel()

Return section modulus with respect to local z-axis

alphaY()

Return shear shape factor with respect to local y-axis

yMax()

Return the maximum distance from the section contour to the local Z axis.

class materials.sections.section_properties.Hole(name, section)

Bases: materials.sections.section_properties.SectionProperties

Section that returns the negative counterparts of the section properties

to simulate a hole in another section object,…)

Variables

section – cross-section of the hole.

A()

Return cross-sectional area.

Iy()

Return second moment of area about the local y-axis

Iz()

Return second moment of area about the local z-axis

J()

Return torsional constant of the section

Wyel()

Return section modulus with respect to local y-axis

Wzel()

Return section modulus with respect to local z-axis

alphaY()

Return shear shape factor with respect to local y-axis

alphaZ()

Return shear shape factor with respect to local z-axis

bCOG()

Return distance from the leftmost fiber to the center of gravity of the section.

defElasticMembranePlateSection(preprocessor, material, overrideRho=None, reductionFactor=1.0)

Elastic membrane plate section appropriate for shell analysis.

Parameters
  • preprocessor – preprocessor object.

  • material – material constitutive model (for which E is the Young’s modulus nu the Poisson’s ratio).

  • overrideRho – if defined (not None), override the value of the material density.

  • reductionFactor – factor that divides the elastic modulus to simulate the effect of cracking, creep, etc.

  • reductionFactor – factor that divides the elastic modulus to simulate the effect of cracking, creep, etc.

getContourPoints()

Return the vertices of the rectangle.

getDict()

Put member values in a dictionary.

getElasticSectionModulusY()

Returns the elastic section modulus with respect to the y axis.

getElasticSectionModulusZ()

Returns the elastic section modulus with respect to the z axis.

getJTorsion()

Return torsional constant of the hole.

getPlasticSectionModulusY()

Returns the plastic section modulus.

Computes the plastic section modulus assuming that plastic neutral axis passes through section centroid (which is true whenever the rectangular section is homogeneous).

getPlasticSectionModulusZ()

Returns the plastic section modulus of the hole.

getRegion(gm, nmbMat, twoDimensionalMember=False)

Generation of a quadrilateral region from the hole geometry.

Parameters
  • gm – object of type section_geometry

  • nmbMat – name of the material (string)

  • twoDimensionalMember – true if the region corresponds to a two-dimensional member.

getShearStiffnessY(G)

Return the shear stiffness of the hole.

getShearStiffnessZ(G)

Return the shear stiffness of the hole.

getTorsionalStiffness(G)

Return the torsional stiffness of the hole.

getWarpingConstant()

Return the value of the hole warping constant.

getYieldMomentY(fy)

Return section yield moment.

Parameters

fy – material yield stress.

getYieldMomentZ(fy)

Return section yield moment.

Parameters

fy – material yield stress.

hCOG()

Return distance from the bottom fiber to the center of gravity of the hole.

report(os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, indentation='')

Get a report of the object contents.

setFromDict(dct)

Read member values from a dictionary.

Parameters

dct – Python dictionary containing the member values.

yMax()

Return the maximum distance from the section contour to the local Z axis.

zMax()

Return the maximum distance from the section contour to the local Y axis.

class materials.sections.section_properties.ISection(name, wdTopFlange, thTopFlange, thWeb, hgWeb, wdBotFlange, thBotFlange)

Bases: materials.sections.section_properties.SectionProperties

I section geometric parameters

Variables
  • wdTF – width of the top flange (parallel to local z-axis)

  • tTF – thickness of the top flange (parallel to local y-axis)

  • tW – thickness of the web (parallel to local z-axis)

  • hW – height of the web (parallel to local y-axis)

  • wBF – width of the bottom flange (parallel to local z-axis)

  • tBF – thickness of the bottom flange (parallel to local y-axis)

A()

Return cross-sectional area of the section

Iy()

Return second moment of area about the local y-axis

Iz()

Return second moment of area about the local z-axis

J()

Return torsional constant of the section (pág. 800 Puentes II. Apuntes para su diseño, cálculo y construcción. Javier Manterola

Wxel()

Return torsional section modulus of the section.

reference: article «I Beam» of Wikipedia.

alphaY()

Return shear shape factor with respect to local y-axis

alphaZ()

Return shear shape factor with respect to local z-axis

getWarpingConstant()

Return warping constant of an I-section

reference: article «I Beam» of Wikipedia.

hCOG()

Return distance from the bottom fiber of the inferior flange to the center of gravity of the section.

hTotal()

Return total height (parallel to local y axis) of the section

yMax()

Return the maximum distance from the section contour to the local Z axis.

zMax()

Return the maximum distance from the section contour to the local Y axis.

class materials.sections.section_properties.PolygonalSection(name, plg)

Bases: materials.sections.section_properties.SectionProperties

Polygonal section geometric parameters

Variables

plg – contour of the section.

A()

Return cross-sectional area of the section

Iy()

Return second moment of area about the local y-axis

Iz()

Return second moment of area about the local z-axis

J()

Return an approximation of the torsional constant of the section

Return the torsional constant of a circle with the same area.

alphaY()

Return shear shape factor with respect to local y-axis

alphaZ()

Return shear shape factor with respect to local z-axis

getContourPoints()

Return the vertices of the rectangle.

getWarpingConstant()

Return the value of the section warping constant.

hTotal()

Return total height (parallel to local y axis) of the section

reCenter()

Put the centroid of the section in the origin.

yMax()

Return the minimum local y coordinate of the section.

yMin()

Return the minimum local y coordinate of the section.

zMax()

Return the minimum local z coordinate of the section.

zMin()

Return the minimum local z coordinate of the section.

class materials.sections.section_properties.RectangularHollowSection(name: str, b: float, h: float, t: float)

Bases: materials.sections.section_properties.RectangularSection

Geometric parameter of a rectangular hollow section with constant

thickness of its walls.

Variables

thickeness – thickness of the section walls.

A()

Return cross-sectional area of the section

Ay()

Return the corrected area for shear along y axis.

Az()

Return the corrected area for shear along z axis.

Iy()

Return second moment of area about the local y-axis

Iyz()

Return the product of inertia about the local axes.

Iz()

Return second moment of area about the local z-axis

J()

Return torsional constant of the section

alphaY()

Return shear shape factor with respect to local y-axis

alphaZ()

Return shear shape factor with respect to local z-axis

bCOG()

Return distance from the leftmost fiber to the center of gravity of the section.

checkThinWalledSection(silent=False)
Check if the wall thickness is small so we get an accurate enough

result from some approximate formulas.

Parameters

silent – if True don’t issue any message.

getContourPoints()

Return the vertices of the section contour.

getDict()

Put member values in a dictionary.

getElasticSectionModulusY()

Returns the elastic section modulus with respect to the y axis.

Reference: https://structx.com/Shape_Formulas_025.html

getElasticSectionModulusZ()

Returns the elasticc section modulus with respect to the z axis.

Reference: https://structx.com/Shape_Formulas_025.html

getJTorsion()

Return torsional constant of the section.

http://dir.cisc-icca.ca/files/technical/techdocs/updates/torsionprop.pdf

getMidContourEnclosedArea()

Return the area enclosed by the mid-contour.

getMidContourLength()

Return the length of the mid-contour of the section.

getPlasticSectionModulusY()

Returns the plastic section modulus.

Computes the plastic section modulus assuming that plastic neutral axis passes through section centroid (which is true whenever the rectangular section is homogeneous).

Reference: https://structx.com/Shape_Formulas_025.html

getPlasticSectionModulusZ()

Returns the plastic section modulus.

Computes the plastic section modulus assuming that plastic neutral axis passes through section centroid (which is true whenever the rectangular section is homogeneous).

Reference: https://structx.com/Shape_Formulas_025.html

getRegions(gm, nmbMat, twoDimensionalMember=False)

generation of four quadrilateral regions from the section geometry (sizes and number of divisions for the cells) made of the specified material

Parameters
  • gm – object of type section_geometry

  • nmbMat – name of the material (string)

  • twoDimensionalMember – true if the region corresponds to a two-dimensional member.

getShearStiffnessY(G)
Return an approximated value of the shear stiffness of the

section.

Parameters

G – material shear modulus.

getShearStiffnessZ(G)
Return an approximated value of the shear stiffness of the

section.

Parameters

G – material shear modulus.

getThicknessRatio()

Return the wall thickness divided by the minimum dimension of the section.

getTorsionalStiffness(G)

Return the torsional stiffness of the section.

Parameters

G – material shear modulus.

getWarpingConstant()

Return the value of the section warping constant according to expression in the SCIA Cross-section theory manual.

getYieldMomentY(fy)

Return section yield moment.

Parameters

fy – material yield stress.

getYieldMomentZ(fy)

Return section yield moment.

Parameters

fy – material yield stress.

hCOG()

Return distance from the bottom fiber to the center of gravity of the section.

report(os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, indentation='')

Get a report of the object contents.

setFromDict(dct)

Read member values from a dictionary.

Parameters

dct – Python dictionary containing the member values.

yMax()

Return the maximum distance from the section contour to the local Z axis.

zMax()

Return the maximum distance from the section contour to the local Y axis.

class materials.sections.section_properties.RectangularSection(name: str, b: float, h: float)

Bases: materials.sections.section_properties.SectionProperties

Rectangular section geometric parameters

Variables
  • b – cross-section width (parallel to local z-axis)

  • h – cross-section depth (parallel to local y-axis)

A()

Return cross-sectional area of the section

Ay()

Return the corrected area for shear along y axis.

Az()

Return the corrected area for shear along z axis.

Iy()

Return second moment of area about the local y-axis

Iyz()

Return the product of inertia about the local axes.

Iz()

Return second moment of area about the local z-axis

J()

Return torsional constant of the section

alphaTable = <scipy.interpolate._interpolate.interp1d object>
alphaY()

Return shear shape factor with respect to local y-axis

alphaZ()

Return shear shape factor with respect to local z-axis

bCOG()

Return distance from the leftmost fiber to the center of gravity of the section.

betaTable = <scipy.interpolate._interpolate.interp1d object>
defElasticMembranePlateSection(preprocessor, material, overrideRho=None, reductionFactor=1.0)

Elastic membrane plate section appropriate for shell analysis.

Parameters
  • preprocessor – preprocessor object.

  • material – material constitutive model (for which E is the Young’s modulus nu the Poisson’s ratio).

  • overrideRho – if defined (not None), override the value of the material density.

  • reductionFactor – factor that divides the elastic modulus to simulate the effect of cracking, creep, etc.

  • reductionFactor – factor that divides the elastic modulus to simulate the effect of cracking, creep, etc.

getAlphaTorsion()

Return alpha coefficient of the section.

Reference: concrete book Jiménez Montoya 14a. edition page 405

getBetaTorsion()

Return beta coefficient of the section.

Reference: concrete book Jiménez Montoya 14a. edition page 405

getContourPoints()

Return the vertices of the rectangle.

getDict()

Put member values in a dictionary.

getElasticSectionModulusY()

Returns the elastic section modulus with respect to the y axis.

getElasticSectionModulusZ()

Returns the elasticc section modulus with respect to the z axis.

getJTorsion()

Return torsional constant of the section.

Reference: concrete book Jiménez Montoya 14a. edition page 405

getPlasticSectionModulusY()

Returns the plastic section modulus.

Computes the plastic section modulus assuming that plastic neutral axis passes through section centroid (which is true whenever the rectangular section is homogeneous).

getPlasticSectionModulusZ()

Returns the plastic section modulus.

Computes the plastic section modulus assuming that plastic neutral axis passes through section centroid (which is true whenever the rectangular section is homogeneous).

getRegion(gm, nmbMat, twoDimensionalMember=False)

generation of a quadrilateral region from the section geometry (sizes and number of divisions for the cells) made of the specified material

Parameters
  • gm – object of type section_geometry

  • nmbMat – name of the material (string)

  • twoDimensionalMember – true if the region corresponds to a two-dimensional member.

getShearStiffnessY(G)

Return the shear stiffness of the section.

getShearStiffnessZ(G)

Return the shear stiffness of the section.

getTorsionalStiffness(G)

Return the torsional stiffness of the section.

getWarpingConstant()

Return the value of the section warping constant according to expression (22) in the article: Lateral torsional stability of timber beams. Ivan Baláž, Yvona Koleková Proceedings of the 6th International Conference on Mechanics and Materials in Design, 2015.

getYieldMomentY(fy)

Return section yield moment.

Parameters

fy – material yield stress.

getYieldMomentZ(fy)

Return section yield moment.

Parameters

fy – material yield stress.

hCOG()

Return distance from the bottom fiber to the center of gravity of the section.

report(os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, indentation='')

Get a report of the object contents.

setFromDict(dct)

Read member values from a dictionary.

Parameters

dct – Python dictionary containing the member values.

xAlpha = [1, 1.25, 1.5, 2, 3, 4, 6, 10, 10000]
xBeta = [1, 1.25, 1.5, 2, 3, 4, 6, 8, 10, 10000]
yAlpha = [0.14, 0.171, 0.196, 0.229, 0.263, 0.281, 0.299, 0.313, 0.3333333333333333]
yBeta = [0.208, 0.221, 0.231, 0.246, 0.267, 0.282, 0.299, 0.307, 0.313, 0.3333333333333333]
yMax()

Return the maximum distance from the section contour to the local Z axis.

zMax()

Return the maximum distance from the section contour to the local Y axis.

class materials.sections.section_properties.SectionProperties(name)

Bases: object

Abstract section properties (area, moments of inertia,…)

Variables
  • name – name identifying the section

  • xc_material – pointer to XC material.

  • torsionalStiffnessFactor – factor to apply to the sectional stiffness (defaults to 1.0).

A()

cross-sectional area (abstract method)

I(majorAxis)
Return the second moment of area about the local major or minor

axis.

Parameters

majorAxis – true if the required inertia corresponds to the bending around major axis.

Iy()

second moment of area about the local y-axis (abstract method)

Iz()

second moment of area about the local z-axis (abstract method)

J()

torsional constant of the section (abstract method)

Steiner(pos)
Return the moments of inertia obtained by applying

the parallel axis theorem (or Huygens-Steiner theorem or Steiner’s theorem.

Parameters

pos – position of the original section centroid

SteinerJ(dist)
Return the moments of inertia obtained by applying

the parallel axis theorem (or Huygens-Steiner theorem or Steiner’s theorem.

Parameters

dist – distance to the original section centroid

SteinerY(z)
Return the moment of inertia obtained by applying

the parallel axis theorem (or Huygens-Steiner theorem or Steiner’s theorem).

Parameters

pos – position of the original section centroid

SteinerZ(y)
Return the moment of inertia obtained by applying

the parallel axis theorem (or Huygens-Steiner theorem or Steiner’s theorem).

Parameters

pos – position of the original section centroid

Wyel()

Return section modulus with respect to local y-axis

Wzel()

Return section modulus with respect to local z-axis

bCOG()

Return distance from the leftmost fiber to the center of gravity of the section.

defElasticSection1d(preprocessor, material, overrideRho=None, reductionFactor=1.0)

Return an elastic section appropriate for truss analysis.

Parameters
  • preprocessor – preprocessor object.

  • material – material constitutive model (for which E is the Young’s modulus)

  • overrideRho – if defined (not None), override the value of the material density.

  • reductionFactor – factor that divides the elastic modulus to simulate the effect of cracking, creep, etc.

defElasticSection2d(preprocessor, material, majorAxis=True, overrideRho=None, reductionFactor=1.0)

Return an elastic section appropriate for 2D beam analysis

Parameters
  • preprocessor – preprocessor object.

  • material – material constitutive model (for which E is the Young’s modulus)

  • majorAxis – true if bending occurs in the section major axis.

  • overrideRho – if defined (not None), override the value of the material density.

  • reductionFactor – factor that divides the elastic modulus to simulate the effect of cracking, creep, etc.

defElasticSection3d(preprocessor, material, overrideRho=None, reductionFactor=1.0)

Return an elastic section appropriate for 3D beam analysis

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • material – material (for which E is the Young’s modulus and G() the shear modulus).

  • overrideRho – if defined (not None), override the value of the material density.

  • reductionFactor – factor that divides the elastic modulus to simulate the effect of cracking, creep, etc.

defElasticShearSection2d(preprocessor, material, majorAxis=True, overrideRho=None, reductionFactor=1.0)

elastic section appropriate for 2D beam analysis, including shear deformations

Parameters
  • preprocessor – preprocessor object.

  • material – material constitutive model (for which E is the Young’s modulus and G() the shear modulus).

  • majorAxis – true if bending occurs in the section major axis.

  • overrideRho – if defined (not None), override the value of the material density.

  • reductionFactor – factor that divides the elastic modulus to simulate the effect of cracking, creep, etc.

defElasticShearSection3d(preprocessor, material, overrideRho=None, reductionFactor=1.0)
elastic section appropriate for 3D beam analysis, including shear

deformations

Parameters
  • preprocessor – preprocessor object.

  • material – material (for which E is the Young’s modulus and G() the shear modulus)

  • overrideRho – if defined (not None), override the value of the material density.

  • reductionFactor – factor that divides the elastic modulus to simulate the effect of cracking, creep, etc.

draw(notes=None)

Draw the section contour using pyplot.

Parameters

notes – notes to insert in the plot.

getCrossSectionProperties2D(material)

Return a CrossSectionProperties object with the 2D properties of the section.

getCrossSectionProperties3D(material)

Return a CrossSectionProperties object with the 2D properties of the section.

getDict()

Put member values in a dictionary.

getPlasticMomentY(fy)

Return section plastic moment around Y axis.

Computes the plastic moment of the section assuming that plastic neutral axis passes through section centroid (which is true whenever the rectangular section is homogeneous).

getPlasticMomentZ(fy)

Return section plastic moment around Z axis.

Computes the plastic moment of the section assuming that plastic neutral axis passes through section centroid (which is true whenever the rectangular section is homogeneous).

getPlasticSectionModulusY()

Returns the plastic section modulus around Y axis.

Computes the plastic section modulus assuming that plastic neutral axis passes through section centroid (which is true whenever the rectangular section is homogeneous).

getPlasticSectionModulusZ()

Returns the plastic section modulus around Z axis.

Computes the plastic section modulus assuming that plastic neutral axis passes through section centroid (which is true whenever the rectangular section is homogeneous).

getRespT(preprocessor, G)
Return an elastic material for modeling torsional response of

section.

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • G – shear modulus.

getRespVy(preprocessor, G)
Return an elastic material for modeling the resoponse of the

section along the Y axis.

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • G – shear modulus.

getRespVz(preprocessor, G)
Return an elastic material for modeling the resoponse of the

section along the Z axis.

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • G – shear modulus.

getWarpingConstant()

torsional constant of the section (abstract method)

getXYVertices(offset: Optional[geom.Vector2d] = None)
Return the contour X,Y coordinates in two separate

lists to be used with pyplot.

Parameters

offset – displacement vector to sum to the positions.

hCOG()

Return distance from the bottom fiber to the center of gravity of the section.

iy()

Return the radius of gyration of the section around the axis parallel to Z that passes through section centroid.

iz()

Return the radius of gyration of the section around the axis parallel to Z that passes through section centroid.

report(os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, indentation='')

Get a report of the object contents.

respTName()

returns a name to identify the torsional response of the section

respVyName()

returns a name to identify the shear Y response of the section

respVzName()

returns a name to identify the shear Z response of the section

setFromDict(dct)

Read member values from a dictionary.

Parameters

dct – Python dictionary containing the member values.

yCenterOfMass()

y coordinate of the center of mass.

yMax()

Return the maximum distance from the section contour to the local Z axis.

zCenterOfMass()

z coordinate of the center of mass.

zMax()

Return the maximum distance from the section contour to the local Y axis.

class materials.sections.section_properties.TSection(name, webWidth, webHeight, flangeWidth, flangeThickness, chamferSide=0.0)

Bases: materials.sections.section_properties.PolygonalSection

T-section.

Variables
  • webWidth – web width.

  • webHeight – web height.

  • flangeWidth – flange width.

  • flangeThickness – flange thickness.

  • chamferSide – side of the chamfer between the web and the flange.

buildContour()

Create the section contour.

materials.sections.section_properties.getInerciaTorsionCajonMonocelular(bs, bi, h, ts, ti, td)

Return torsional section modulus of the section.

Parameters
  • bs – Upper deck width (without the overhangs)

  • bi – Lower deck width.

  • ts – Upper deck thickness.

  • ti – Lower deck thickness.

  • td – Thickness of the webs.

  • h – Box depth (between mid-planes).

materials.sections.section_properties.solicitationType(epsCMin, epsSMax)

Solicitation type from maximum and minimum strain.

Return:

1: Pure or combined tension (all fibers are tensioned). 2: Pure or combined bending (tensioned and compressed fibers). 3: Pure or combined compression (all fibers are compressed).

param epsCMin

Minimal strain.

param epsCMax

Maximal strain.

materials.sections.section_properties.solicitationTypeString(tipoSol)

Returns a string describing the solicitation type.

Parameters

solType – number identifiying the solicitation type: 1: Pure or combined tension (all fibers are tensioned). 2: Pure or combined bending (tensioned and compressed fibers). 3: Pure or combined compression (all fibers are compressed).

Stress calculation

class materials.sections.stress_calc.StressCalc(b, h, r, rp, As, Asp, Ec, Es)

Bases: object

Ac()
As = 0.0157
Asp = 0
Ec = 30891000000.0
Es = 200000000000.0
Ic()
M = 8625000.0
N = 30500000.0
b = 10
elasticStressAc()
elasticStressAc0()
elasticStressAs()
elasticStressAsp()
getAh()
getIh()
getMc()
getMs()
getMsp()
getNc()
getNs()
getNsp()
getYCentroidAh()
getYCentroidAs()
getYs()
getYsp()
h = 0.8
inCompression()
inTraction()
r = 0.05
residX(x)
resistingM()
resistingN()
rp = 0.05
sgc = 0.0
sgc0 = 0.0
sgs = 0.0
sgsp = 0.0
solve(N, M)
swap()
totAs()
totIs()
verif()
xElasticNeutralAxis()
xx = 0.0

Structural steel

Base classes and functions for structural steel.

class materials.sections.structural_steel.CHShape(steel, name, table)

Bases: materials.sections.structural_steel.SteelShape

Circular hollow shape

getOutsideDiameter()

Returns the outside diameter.

getRho()

Returns mass per unit length.

getSymmetry()

Returns the symmetry of the shape: ‘double’, ‘simple’ or ‘none’.

getWarpingConstant()

Return the value of the section warping constant.

class materials.sections.structural_steel.IShape(steel, name, table)

Bases: materials.sections.structural_steel.SteelShape

I (or double tee) shaped steel profile.

b()
d()

Return internal web height

discretization(preprocessor, matModelName)

Discretize the section into tiles.

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • matModelName – name for the new material.

getDict()

Put member values in a dictionary.

getFiberSection3d(preprocessor, matModelName)

Return a FiberSection3d material.

Parameters
  • preprocessor – preprocessor of the finite element problem.

  • matModelName – name for the new material.

getRho()

Returns mass per unit length.

getShapeRegions()

Returns regions valid for fiber section model creation.

getSymmetry()

Returns the symmetry of the shape: ‘double’, ‘simple’ or ‘none’.

h()

Return shape height.

hCOG()

Return distance from the bottom fiber of the inferior flange to the centre of gravity of the section.

hw()

Return web height

r()

Return radius web-flange

setFromDict(dct)

Read member values from a dictionary.

tf()

Return flange thickess

tw()

Return web thickess

updateQuantities()

Update some derived values.

widthToThicknessFlange()

return the ratio width-to-thickness for classification in flange (table 5.2 EC3-1-1)

widthToThicknessWeb()

return the ratio width-to-thickness for classification in web (table 5.2 EC3-1-1)

class materials.sections.structural_steel.LShape(steel, name, table)

Bases: materials.sections.structural_steel.SteelShape

Single angle steel shape.

getSymmetry()

Returns the symmetry of the shape: ‘double’, ‘simple’ or ‘none’.

class materials.sections.structural_steel.QHShape(steel, name, table)

Bases: materials.sections.structural_steel.SteelShape

Quadrilateral hollow shape

Variables
  • bHalf – half section width.

  • hHalf – half section height

b()
getOutsideRadius()

Return the outside radius as two times the wall thickness of HS shape. (AISC Steel Construction Manual (1989 ASD) Tubing Dimensions and Properties on pages 1-94 - 1-103 says: Properties are based upon a nominal OUTISIDE corner radius equal to two times the wall thickness.) (This value is also used in example K.1 of AISC Design Examples V14.1)

getRho()

Return mass per unit length.

getSymmetry()

Returns the symmetry of the shape: ‘double’, ‘simple’ or ‘none’.

getWarpingConstant()

Return the value of the warping constant.

h()

Return shape height.

hw()

Return web height

widthToThicknessHorzInt()

return the internal ratio width-to-thickness for classification in horizontal sup. and inf. plates (table 5.2 EC3-1-1)

widthToThicknessWeb()

return the ratio width-to-thickness for classification in web (table 5.2 EC3-1-1)

class materials.sections.structural_steel.SteelShape(steel, name, table)

Bases: materials.sections.section_properties.SectionProperties

Properties of a section in structural steel

Variables
  • steelType – steel object (e.g. S275JR)

  • shape – steel profile (i.e. IPE300)

A()

return cross-sectional area

Avy()

return shear area along y axis

Avz()

return shear area along z axis

EA()

return cross-sectional axial stiffness.

EIy()

return the product E*Iy

EIz()

return the product E*Iz

GAy()

return cross-sectional shear stiffness along y axis.

GAz()

return cross-sectional shear stiffness along y axis.

GJ()

return the product G*J (G=shear modulus, J=St. Venant torsional constant)

It()

return Saint Venant torsional constant.

Iw()

return warping constant.

Iy()

return second moment of area about y-axis (weak axis)

Iz()

return second moment of area about z-axis (strong axis)

J()

return torsional moment of inertia of the section

alphaY()

return shear shape factor with respect to y-axis (weak axis)

alphaZ()

return shear shape factor with respect to z-axis (strong axis)

checkBiaxialBendingForElement(elem, nmbComb)
Called in every commit to check biaxial bending criterion

(bars in 3D problems).

Parameters
  • elem – finite element to check.

  • nmbComb – name of the load combination.

checkUniaxialBendingForElement(elem, nmbComb)
Called in every commit to check uniaxial bending criterion

(bars in 2D problems).

Parameters
  • elem – finite element to check.

  • nmbComb – name of the load combination.

checkYShearForElement(elem, nmbComb)

Called in every commit to y shear criterion.

Parameters
  • elem – finite element to check.

  • nmbComb – name of the load combination.

checkZShearForElement(elem, nmbComb)

Called in every commit to z shear criterion.

Parameters
  • elem – finite element to check.

  • nmbComb – name of the load combination.

defElasticSection1d(preprocessor, overrideRho=None)

Return an elastic section appropriate for truss analysis.

Parameters
  • preprocessor – preprocessor object.

  • overrideRho – if defined (not None), override the value of the material density.

defElasticSection2d(preprocessor, majorAxis=True, overrideRho=None)

Return an elastic section appropriate for 2D beam analysis

Parameters
  • preprocessor – preprocessor object.

  • majorAxis – true if bending occurs in the section major axis.

  • overrideRho – if defined (not None), override the value of the material density.

defElasticSection3d(preprocessor, overrideRho=None)

Return an elastic section appropriate for 3D beam analysis

Parameters
  • preprocessor – preprocessor object.

  • overrideRho – if defined (not None), override the value of the material density.

defElasticShearSection2d(preprocessor, majorAxis=True, overrideRho=None)

elastic section appropriate for 2D beam analysis, including shear deformations

Parameters
  • preprocessor – preprocessor object.

  • majorAxis – true if bending occurs in the section major axis.

  • overrideRho – if defined (not None), override the value of the material density.

defElasticShearSection3d(preprocessor, overrideRho=None)
elastic section appropriate for 3D beam analysis, including shear

deformations

Parameters
  • preprocessor – preprocessor object.

  • overrideRho – if defined (not None), override the value of the material density.

get(code)
getAeff()

return effective area depending on the cross-section class.

getDict()

Put member values in a dictionary.

getElasticMomentY()

Return the theoretical elastic moment of the section (without taking into acount the class of the section) with respect to y-axis (weak axis).

getElasticMomentZ()

Return the theoretical elastic moment of the section (without taking into acount the class of the section) with respect to z-axis (strong axis).

getGyrationRadiusY()

return radius of gyration about y-axis (weak axis)

getGyrationRadiusZ()

return radius of gyration about z-axis (strong axis)

getNcr(LeqY, LeqZ)

return theoretical critical axial force (minimum of NcrY and NcrZ).

Parameters
  • LeqY – buckling length of the member in XZ buckling plane.

  • LeqZ – buckling length of the member in XY buckling plane.

getNcrY(Leq)

return theoretical critical axial force on y-axis (weak axis).

Parameters

Leq – buckling length of the member in XZ buckling plane.

getNcrZ(Leq)

return theoretical critical axial force on z-axis (strong axis).

Parameters

Leq – buckling length of the member in XY buckling plane.

getPlasticMomentY()

Return the theoretical plastic moment of the section (without taking into acount the class of the section) with respect to y-axis (weak axis).

getPlasticMomentZ()

Return the theoretical plastic moment of the section (without taking into acount the class of the section) with respect to z-axis (strong axis).

getSlendernessY(Leq)

return buckling slenderness relative to y-axis (weak axis)

Parameters

Leq – buckling length in XZ buckling plane.

getSlendernessZ(Leq)

return buckling slenderness relative to z-axis (strong axis)

Parameters

Leq – buckling length in XY buckling plane.

getSymmetry()

Returns the symmetry of the shape: ‘double’, ‘simple’ or ‘none’.

getWy()

return section modulus with respect to y-axis (weak axis).

getWz()

return section modulus with respect to z-axis (strong axis).

setFromDict(dct)

Read member values from a dictionary.

setupULSControlVars(elems)
For each element creates the variables

needed to check ultimate limit state criterion to satisfy.

Parameters

elems – elements to define properties on.

class materials.sections.structural_steel.UShape(steel, name, table)

Bases: materials.sections.structural_steel.SteelShape

Channel (or U) shaped structural steel section.

b()

Return shape height.

d()

Return internal web height.

getRho()

Returns mass per unit length.

getSymmetry()

Returns the symmetry of the shape: ‘double’, ‘simple’ or ‘none’.

h()

Return shape height.

hCOG()

Return distance from the bottom fiber of the inferior flange to the centre of gravity of the section.

hw()

Return web height

r()

Return radius web-flange

tf()

Return flange thickess

tw()

Return web thickess

widthToThicknessFlange()

return the ratio width-to-thickness for classification in flange (table 5.2 EC3-1-1)

widthToThicknessWeb()

return the ratio width-to-thickness for classification in web (table 5.2 EC3-1-1)

RC sections’ container

Container of reinforced concrete section definitions.

class materials.sections.RC_sections_container.SectionContainer

Bases: object

Section container.

Variables
  • sections – List with the section definitions.

  • mapSections – Dictionary with pairs (sectionName, reference to section definition.

  • mapInteractionDiagrams – file containing a dictionary such that associates each element with the two interactions diagrams of materials to be used in the verification.

append(rcSections)

Append the argument to the container.

Parameters

rcSections

calcInteractionDiagrams(preprocessor, diagramType='NMyMz')

Calculates 3D interaction diagrams for each section.

Parameters
  • preprocessor – XC preprocessor for the finite element model.

  • diagramType – three dimensional diagram: NMyMz bi-dimensional diagram: NMy bi-dimensional diagram: NMz

clearRCsections()

Clear previously defined RC sections.

createRCsections(preprocessor, matDiagType)

Creates for each element in the container the fiber sections (RCsimpleSections) associated with it. Depending on the value of attribute ‘initTensStiff’ of the concrete class, the method generates the concrete fibers using a constitutive model without tension branch (diagram ot type concrete01) or uses a concrete02 model, that initializes the material in order to check the cracking limit state (tension stiffening models).

Parameters
  • preprocessor – XC preprocessor of the finite element model.

  • matDiagType – type of stress-strain diagram (=”k” for characteristic diagram, =”d” for design diagram)

extend(other)

Add all the elements of the container argument to the calling one.

Parameters

other – SectionContainer object.

getDict()

Return a dictionary containing the object data.

getSectionNames()

Return the names of the sections stored in the container.

latexReport(os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, graphicWidth='70mm', outputPath=None, includeGraphicsPath=None, preprocessor=None, matDiagType='k')

Write a report of the contained sections in LaTeX format.

Parameters
  • os – output stream.

  • graphicWidth – width for the cross-section graphic.

  • outputPath – directory to write the section plot into.

  • includeGraphicsPath – directory to use in the latex includegraphics command.

  • preprocessor – pre-processor of the FE problem.

  • matDiagType – diagram type; if “k” use the diagram corresponding to characteristic values of the material, if “d” use the design values one.

classmethod newFromDict(dct=None)

Builds a new object from the data in the given dictionary.

Parameters
  • cls – class of the object itself.

  • dct – dictionary contaning the data.

pdfReport(outputFileName: Optional[str] = None, graphicWidth='70mm', showPDF=False, keepPDF=True, preprocessor=None, matDiagType='k')

Write a report of the contained sections in LaTeX format.

Parameters
  • outputFileName – name of the output file.

  • graphicWidth – width for the cross-section graphic.

  • showPDF – if true display the PDF output on the screen.

  • keepPDF – if true don’t remove the PDF output.

  • preprocessor – pre-processor of the FE problem.

  • matDiagType – diagram type; if “k” use the diagram corresponding to characteristic values of the material, if “d” use the design values one.

report(os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, indentation='')

Get a report of the object contents.

search(nmb)

Return section named nmb (if founded)

setFromDict(dct)

Set the data values from the dictionary argument.

Parameters

dct – dictionary containing the values of the object members.

Rebar family

Definition of typical reinforcement schemes.

class materials.sections.rebar_family.DoubleRebarFamily(f1, f2)

Bases: object

Two reinforcement bars families.

Variables
  • f1 – first rebar family.

  • f2 – second rebar family.

d(thickness)
getAs(width=1.0)

Return the total area of the bars.

Parameters

width – width of the reinforcement.

getBasicAnchorageLength(concrete)

Return the basic anchorage length of the bars.

Parameters

concrete – concrete material.

getCopy()
getDefStrings()

Return definition strings for drawSchema.

getEffectiveCover()

returns the effective cover of the rebar family.

Returns the distance between the surface of the concrete and the centroid of the rebars family.

getMR(concrete, b, thickness, z=None)

Return the bending resistance of the (b x thickness) rectangular section.

Parameters
  • concrete – concrete material.

  • b – width of the rectangular section.

  • thickness – height of the rectangular section.

  • z – inner lever arm (if None z= 0.9*d).

getMinReinfAreaInBending(concrete, thickness, memberType)
Return the minimun amount of bonded reinforcement to control cracking

for reinforced concrete sections under bending.

Parameters
  • concrete – concrete material.

  • thickness – thickness of the bended member.

  • memberType – type of member (slab, wall,…).

getMinReinfAreaInTension(concrete, thickness, memberType)
Return the minimun amount of bonded reinforcement to control cracking

for reinforced concrete sections under tension.

Parameters
  • concrete – concrete material.

  • thickness – thickness of the tensioned member.

  • memberType – type of member (slab, wall,…).

getSpacing(width=1.0)

Return the average spacing of the bars.

Parameters

width – width of the reinforcement.

writeDef(outputFile, concrete)
writeRebars(outputFile, concrete, AsMin)

Write rebar family data.

Parameters
  • outputFile – output file.

  • concrete – concrete material.

  • AsMin – minimum amount of reinforcement.

class materials.sections.rebar_family.FamNBars(steel, n, diam, spacing, concreteCover)

Bases: materials.sections.rebar_family.RebarFamily

Family of “n” rebars.

Variables

n – number of rebars.

getAs()

Return the total area of the bars.

getNumBars()

Return the number of bars in the length argument.

Parameters
  • width – width of the reinforcement.

  • roundUp – if true return an integer number of bars greater or equal to (width/spacing).

getT()

Return the design value of the ultimate tension force in the reinforcement.

getWidth()

Return the width occupied by the rebar family.

n = 2
writeDef(outputFile, concrete)
class materials.sections.rebar_family.Rebar(diam: float, steel=None)

Bases: object

Reinforcement bar.

Variables
  • diam – diameter of the bars.

  • steel – steel material.

getArea()

Return the area of each bar.

getDesignStrength()

Return the design value of the bar strength.

getDiam()

Return the diameter of the bars.

class materials.sections.rebar_family.RebarArrangement(numberOfRebars=None, spacing=None, width=None)

Bases: object

rebar arrangement (number of rebars, spacing and width).

Variables
  • numberOfRebars – number of rebars.

  • spacing – distance between bars.

  • width – total length occupied by the bar set.

getNBarsFamily(steel, diam, concreteCover)

Return a family of “n” rebars.

Parameters
  • steel – reinforcing steel material.

  • diam – diameter of the bars.

  • concreteCover – concrete cover of the bars.

class materials.sections.rebar_family.RebarFamily(steel, diam, spacing, concreteCover)

Bases: materials.sections.rebar_family.RebarRow

Family of reinforcement bars.

d(thickness)

Return the effective depth of the reinforcement.

Parameters

thickness – height of the rectangular section.

getCopy()

Virtual constructor.

getDefStr()

Return definition strings for drawSchema.

getDefStrings()

Return definition strings for drawSchema.

getMR(concrete, b, thickness, z=None)

Return the bending resistance of the (b x thickness) rectangular section.

Parameters
  • concrete – concrete material.

  • b – width of the rectangular section.

  • thickness – height of the rectangular section.

  • z – inner lever arm (if None z= 0.9*d).

minDiams = 50
writeDef(outputFile, concrete)
writeRebars(outputFile, concrete, AsMin)

Write rebar family data.

Parameters
  • outputFile – output file.

  • concrete – concrete object.

  • AsMin – minimum required reinforcement area.

class materials.sections.rebar_family.RebarRow(diam: float, spacing: float, concreteCover: float, steel=None)

Bases: materials.sections.rebar_family.Rebar

Row of reinforcement bars.

Variables
  • diam – diameter of the bars.

  • spacing – spacing of the bars.

  • concreteCover – concrete cover of the bars.

getAs(width=1.0, roundUp=False)

Return the total area of the bars.

Parameters

width – width of the reinforcement.

getBarArea()

Return the area of each bar.

getClearDist()

Return the clear distance between parallel bars

getClearDistLap()

Return the clear distance between lapped parallel bars Lapped bars are supposed to touch one another within the lap length

getEffectiveCover()

returns the effective cover of the rebar family.

Returns the distance between the surface of the concrete and the centroid of the rebars family.

getNumBars(width, roundUp=False)

Return the number of bars in the length argument.

Parameters
  • width – width of the reinforcement.

  • roundUp – if true return an integer number of bars greater or equal to (width/spacing).

getNumBarsPerMeter(roundUp=False)

Return the number of bars per unit length.

Parameters

roundUp – if true return an integer number of bars greater or equal to (width/spacing).

getT(width=1.0, roundUp=False)
Return the design value of the ultimate tension force in

the reinforcement.

Parameters
  • width – width of the reinforcement.

  • roundUp – if true return an integer number of bars greater or equal to (width/spacing).

materials.sections.rebar_family.writeF(outputFile, text, F)

Internal forces

Material internal forces (generalized stresses).

class materials.sections.internal_forces.CrossSectionInternalForces(N=0.0, Vy=0.0, Vz=0.0, T=0.0, My=0.0, Mz=0.0)

Bases: object

Internal forces on a 3D section (6 degrees of freedom).

Variables
  • N – axial force.

  • Vy – shear force parallel to axis y.

  • Vz – shear force parallel to axis z.

  • T – Torque.

  • My – bending moment parallel to axis y.

  • Mz – bending moment parallel to axis z.

getCSVString()

returns a comma separated values string that represents the internal forces.

getComponents()

Returns the internal forces in a list.

getCopy()

Return a copy of this object.

getDict()

returns a dictionary whith the values of the internal forces.

getModulus()

modulus of the corresponding [N,Vy,Vz,T,My,Mz] vector.

increaseEccentricities(ez, ey)

Increase the eccentricity of the axial force with the given values.

Parameters
  • ez – additional eccentricity around z axis.

  • ey – additional eccentricity around y axis.

setForcesFromDict(dct)
Assing values to the internal forces extracting them from the

given dictionary.

Parameters

dct – dictionary containing the values of the forces.

setFromCSVString(csvStr, offset)

Sets the internal forces from a CSV string.

setFromDict(dct)

Sets the internal forces from the dictionary argument.

class materials.sections.internal_forces.ShellMaterialInternalForces(n1=0.0, n2=0.0, n12=0.0, m1=0.0, m2=0.0, m12=0.0, q13=0.0, q23=0.0)

Bases: object

Internal forces on a material point of a shell element

Variables
  • n1 – axial force parallel to axis 1.

  • n2 – axial force parallel to axis 2.

  • n12 – in plane shear force.

  • m1 – bending moment parallel to axis 1.

  • m2 – bending moment parallel to axis 2.

  • m12 – twisting stress resultant.

  • q13 – out of plane shear force normal to axis 1 and parallel to axis 3.

  • q23 – out of plane shear force normal to axis 1 and parallel to axis 3.

getCSVString()

returns a comma separated values string that represents the internal forces.

getDict()

returns a dictionary whith the values of the internal forces.

getWoodArmer(alsoForAxialForces=False)

returns Wood-Armer method internal forces.

Parameters

alsoForAxialForces – if true use Wood-Armer method for both axial and bending internal forces otherwise use it only for bending moments.

getWoodArmer1(alsoForAxialForces=False)

returns Wood-Armer method internal forces for axis 1.

Parameters

alsoForAxialForces – if true use Wood-Armer method for both axial and bending internal forces otherwise use it only for bending moments.

getWoodArmer2(alsoForAxialForces=False)

returns Wood-Armer method internal forces for axis 2.

Parameters

alsoForAxialForces – if true use Wood-Armer method for both axial and bending internal forces otherwise use it only for bending moments.

setFromAverageInShellElement(element, fConv=1.0)

Extracts the average internal forces from the element.

Parameters
  • element – element to get the internal forces from.

  • fConv – conversion factor.

setFromCSVString(csvStr, offset)

Sets the internal forces from a CSV string.

setFromDict(dct)

Sets the internal forces from the dictionary argument.

transform(theta)
Calculates the components for a reference system rotated

the given angle.

Parameters

theta – angle of the new reference system with the original one.

materials.sections.internal_forces.transform_internal_forces(iForces, theta)

Computes internal forces in a system rotated theta degrees with respect to the z(3) axis.

Fiber section materials