Main modules

Loads

class actions.loads.BaseVectorLoad(name, loadVector)

Bases: object

Base class for loads introduced using a load as an xcVector

Variables
  • name – name identifying the load

  • loadVector – load xc.Vector

class actions.loads.EarthPressLoad(name, xcSet, soilData, vDir)

Bases: object

Earth pressure applied on the elements (shell or beams) included in the set xcSet.

Variables
  • name – name identifying the load

  • xcSet – set that contains the elements (shells and/or beams)

  • soilData – instance of the class EarthPressureModel that defines the soil parameters required to calculate the earth pressure (K:coefficient of pressure, zGround: global Z coordinate of ground level,gammaSoil: weight density of soil, zWater: global Z coordinate of groundwater level, gammaWater: weight density of water) . soilProp is None if earth thrust is not considered.

:ivar vDir:unit xc vector defining pressures direction :ivar stripLoads: list of instances of the class

StripLoadOnBackfill to define (if any) strip surcharge loads on the backfill (defaults to [], no loads)

Variables
  • lineLoads – list of instances of the class LineVerticalLoadOnBackfill to define (if any) line surcharge loads acting in vertical direction on the backfill (defaults to [], no loads)

  • horzLoads – list of instances of the class HorizontalLoadOnBackfill to define (if any) surcharge loads acting in horizontal direction on the backfill (defaults to [], no loads)

appendLoadToCurrentLoadPattern()

Append load to the current load pattern.

getMaxMagnitude()

Return the maximum magnitude of the vector loads

class actions.loads.InertialLoad(name, lstSets, vAccel)

Bases: actions.loads.BaseVectorLoad

Inertial load (density*acceleration) applied to the elements in the list of mesh-sets

Variables
  • name – name identifying the load

  • lstSets – list of sets of elements

  • vAccel – acceleration vector xc.Vector([ax,ay,az])

appendLoadToCurrentLoadPattern()
class actions.loads.MovableLoad(P, v, t0: float, nodes)

Bases: object

Load that moves along a row of nodes.

Variables
  • P – load value (constant or function of time).

  • v – load speed (constant or function of time).

  • t0 – time when the load enters the first node.

  • nodePositions – list of pairs (nodeTag, xNode).

getLoadOnNode(iNode: int, t)

Return the value of the load in the node.

Parameters
  • iNode – node index.

  • t – time.

getNodeLoadHistory(tBegin, tEnd, step)

Compute the load history for each node.

Parameters
  • tBegin – start time.

  • tEnd – end time.

  • step – time step.

class actions.loads.NodalLoad(name, lstNod, loadVector)

Bases: actions.loads.BaseVectorLoad

Point load applied on a list of nodes

Variables
  • name – name identifying the load

  • lstNod – list of nodes on which the load is applied.

  • loadVector – xc.Vector with the six components of the load: xc.Vector([Fx,Fy,Fz,Mx,My,Mz]).

appendLoadToCurrentLoadPattern()
getMaxMagnitude()

Return the maximum magnitude of the vector loads

class actions.loads.PointLoadOverShellElems(name, xcSet, loadVector, prismBase, prismAxis='Z', refSystem='Global')

Bases: actions.loads.BaseVectorLoad

Point load distributed over the shell elements in xcSet whose centroids are inside the prism defined by the 2D polygon prismBase and one global axis.

Variables
  • name – name identifying the load

  • xcSet – set that contains the shell elements

  • loadVector – xc vector with the six components of the point load: xc.Vector([Fx,Fy,Fz,Mx,My,Mz]).

  • prismBase

    2D polygon that defines the n-sided base of the prism. The vertices of the polygon are defined in global coordinates in the following way:

    • for X-axis-prism: (y,z)

    • for Y-axis-prism: (x,z)

    • for Z-axis-prism: (x,y)

  • prismAxis – axis of the prism (can be equal to ‘X’, ‘Y’, ‘Z’) (defaults to ‘Z’)

  • refSystem – reference system in which loadVector is defined: ‘Local’: element local coordinate system ‘Global’: global coordinate system (defaults to ‘Global’)

appendLoadToCurrentLoadPattern()

Append load to the current load pattern.

distrParam()

Return the set of elements over which to distribute the point load and the coefficient that must be applied to it

getMaxMagnitude()

Return the maximum magnitude of the vector loads

class actions.loads.SlidingVectorLoad(name, nodes, pntCoord, loadVector)

Bases: actions.loads.BaseVectorLoad

Distribute load expressed as a sliding vector over the nodes in a set.

Variables
  • name – name identifying the load

  • nodes – nodes to distribute the load on.

  • pntCoord – (x,y,z) coordinates of a point of the sliding vector.

  • loadVector – xc.Vector(Fx,Fy,Fz,Mx,My,Mz) components of the force sliding vector

appendLoadToCurrentLoadPattern()

Append the loads to the current load pattern.

class actions.loads.StrainGradientThermalLoadOnShells(name, elemSet, elThick, DOF, alpha, Ttop, Tbottom)

Bases: actions.imposed_strain.imp_strain.gradThermalStrain

Apply a thermal gradient between top and bottom faces of the shell elements in xcSet.

Variables
  • name – name identifying the load

  • xcSet – set that contains the elements

  • elThick – thickness of elements

  • alpha – Thermal expansion coefficient of material (1/ºC)

  • Ttop – Temperature (ºC) at the top face of elements

  • Tbottom – Temperature (ºC) at the bottom face of elements

  • DOFstrain – degree of freedom to which apply the strain 3: curvature around local x 4: curvature around local y 5: curvature around local z

appendLoadToCurrentLoadPattern()

Append load to the load pattern passed as parameter.

class actions.loads.StrainLoadOnBeams(name, xcSet, strain)

Bases: object

Strain load applied on the beam elements in xcSet

appendLoadToCurrentLoadPattern()

Append load to the load pattern passed as parameter.

class actions.loads.StrainLoadOnShells(name, xcSet, DOFstrain, strain)

Bases: object

Strain load applied on the shell elements in xcSet

Variables
  • name – name identifying the load

  • xcSet – set that contains the elements

  • DOFstrain – list of degrees of freedom to which apply the strain 0: strain along local x 1: strain along local y 2: strain along local z

  • strain – strain (e.g.: alpha x deltaT for thermal expansion)

appendLoadToCurrentLoadPattern()

Append load to the load pattern passed as parameter.

class actions.loads.StrainLoadOnTrusses(name, xcSet, strain)

Bases: object

Strain load applied on the truss elements in xcSet

appendLoadToCurrentLoadPattern()

Append load to the load pattern passed as parameter.

class actions.loads.UnifLoadSurfNodesDistributed(name, surfSet, loadVector)

Bases: actions.loads.BaseVectorLoad

Distribute uniform load defined on surfaces in surfSet (not necessarily meshed) among the nodes that touch each surface.

Variables
  • name – name identifying the load

  • surfSet – set that contains the surfaces (not necesarily meshed)

  • loadVector – xc.Vector with the six components of the load: xc.Vector([Fx,Fy,Fz,Mx,My,Mz]).

appendLoadToCurrentLoadPattern()

Append load to the current load pattern.

getMaxMagnitude()

Return the maximum magnitude of the vector loads

class actions.loads.UniformLoadOnBeams(name, xcSet, loadVector, refSystem='Global')

Bases: actions.loads.BaseVectorLoad

Uniform load applied on the beam elements in the set passed as parameter.

Variables
  • name – name identifying the load

  • xcSet – set that contains the elements

  • loadVector – xc.Vector with the components of the load: xc.Vector([Fx,Fy,Fz,Mx,My,Mz]) for 3D elements, xc.Vector([Fx,Fy,Mz]) for 2D elements

  • refSystem – reference system in which loadVector is defined: ‘Local’: element local coordinate system ‘Global’: global coordinate system (defaults to ‘Global)

appendLoadToCurrentLoadPattern()

Append load to the current load pattern.

getMaxMagnitude()

Return the maximum magnitude of the vector loads

class actions.loads.UniformLoadOnLines(name, xcSet, loadVector)

Bases: actions.loads.BaseVectorLoad

Uniform load applied to all the lines (not necessarily defined as lines for latter generation of beam elements, they can be lines belonging to surfaces for example) found in the xcSet The uniform load is introduced as point loads in the nodes

Variables
  • name – name identifying the load

  • xcSet – set that contains the lines

  • loadVector – xc.Vector with the six components of the load: xc.Vector([Fx,Fy,Fz,Mx,My,Mz]).

appendLoadToCurrentLoadPattern()
getMaxMagnitude()

Return the maximum magnitude of the vector loads

class actions.loads.UniformLoadOnSurfaces(name, xcSet, loadVector, refSystem='Global')

Bases: actions.loads.BaseVectorLoad

Uniform load applied on the shell elements generated from all the surfaces in the xcSet.

Variables
  • name – name identifying the load

  • xcSet – set that contains the surfaces

  • loadVector – xc.Vector with the six components of the load: xc.Vector([Fx,Fy,Fz,Mx,My,Mz]).

  • refSystem – reference system in which loadVector is defined: ‘Local’: element local coordinate system ‘Global’: global coordinate system (defaults to ‘Global)

appendLoadToCurrentLoadPattern()

Append load to the current load pattern.

getMaxMagnitude()

Return the maximum magnitude of the vector loads

class actions.loads.UniformLoadOnTrusses(name, xcSet, loadVector)

Bases: actions.loads.BaseVectorLoad

Uniform load applied on the truss elements elements in the set passed as parameter. Load is applied as point loads in the extremities of the truss element.

Variables
  • name – name identifying the load

  • xcSet – set that contains the lines

  • loadVector – xc.Vector with the six components of the uniform load in global coordinates xc.Vector([Fx,Fy,Fz,Mx,My,Mz]).

appendLoadToCurrentLoadPattern()

Append load to the current load pattern.

getMaxMagnitude()

Return the maximum magnitude of the vector loads

class actions.loads.WindLoadOnBeams(name, xcSet, windParams, Cp, vDirWind, exposedSurf=None, Gf=1.0)

Bases: actions.loads.BaseVectorLoad

Wind load applied on the beam elements in the set passed as parameter.

Variables
  • name – name identifying the load

  • xcSet – set that contains the elements

  • windParams – instance of class base_wind.windParams defining the parameters to calculate wind pressure.

  • Cp – pressure coefficient

  • vDirWind – unitary xc.Vector in Wind direction (global coordinates) xc.Vector([Wx,Wy,Wz]).

  • Gf – gust factor (defaults to 1.0)

appendLoadToCurrentLoadPattern()

Append load to the current load pattern.

getMaxMagnitude()

Return the maximum magnitude of the vector loads

class actions.loads.WindLoadOnShells(name, xcSet, windParams, Cp, positFace=True, Gf=1.0)

Bases: actions.loads.BaseVectorLoad

Wind load applied on the beam elements in the set passed as parameter.

Variables
  • name – name identifying the load

  • xcSet – set that contains the elements

  • windParams – instance of class base_wind.windParams defining the parameters to calculate wind pressure.

  • Cp – pressure coefficient

  • positFace – if True wind acts against the positive face of the shell (defaults to True)

  • Gf – gust factor (defaults to 1.0)

appendLoadToCurrentLoadPattern()
class actions.loads.WindLoadOnTrusses(name, xcSet, windParams, Cp, vDirWind, exposedSurf=None, Gf=1.0)

Bases: actions.loads.BaseVectorLoad

Wind load applied on the truss elements in the set passed as parameter.

Variables
  • name – name identifying the load

  • xcSet – set that contains the elements

  • windParams – instance of class base_wind.windParams defining the parameters to calculate wind pressure.

  • Cp – pressure coefficient

  • vDirWind – unitary xc.Vector in Wind direction (global coordinates) xc.Vector([Wx,Wy,Wz]).

  • exposedSurf – surface expossed to wind per unit length of beam. If None exposedSurf is taken as the value of method h() of property ‘crossSection’ for each element.

  • Gf – gust factor (defaults to 1.0)

appendLoadToCurrentLoadPattern()

Append load to the current load pattern.

getMaxMagnitude()

Return the maximum magnitude of the vector loads

actions.loads.isotropic_strain_load_on_set(loadPattern, xcSet, strain)
Defines an isotropic and homogeneous strain load applied in the

elements of the set.

Parameters
  • loadPattern – load pattern to append the strain loads to.

  • xcSet – XC set that contains the elements

  • strain – strain (e.g.: alpha x deltaT for thermal expansion)

Load cases

class actions.load_cases.LoadCase(preprocessor, name, loadPType='default', timeSType='constant_ts')

Bases: object

Definition of a load case.

Variables
  • name – name given to the load case

  • loadPType – type of load pattern. Available types: “default”, “uniform_excitation”, “multi_support_pattern”, “pbowl_loading”. Defaults to “default”

  • timeSType – type of time series. Available time series: “constant_ts”,”linear_ts”,”path_ts”,”pulse_ts”, “rectangular_ts”,”triangular_ts”,”trig_ts”. Defaults to “constant_ts”

  • timeSName – name of the time series

  • lstOfLoadDef – list of load definitions added to the load case.

addLstLoads(lstLoads)

list of loads to be added to the load case.

Parameters

lstLoads – list of load definitions to be added to this load case.

create()

Create the XC load case and set it as the current one.

getDict()

Return a dictionary with the object values.

getTimeSeriesName()

Return the name of the time series corresponding to this load case.

newLoadPattern()

Create the load pattern.

newTimeSeries()

Create the time series for the load case.

setFromDict(dct)

Set the fields from the values of the dictionary argument.

Parameters

dct – dictionary containing the field values.

class actions.load_cases.LoadCaseManager(preprocessor)

Bases: object

Manager for XC load cases.

Variables
  • prep – preprocessor of the finite element problem.

  • timeSeries – dictionary containing the time series defined by this object.

  • loadCases – dictionary containing the load patterns defined by this object.

appendLoadPattern(lp)

Appends an already defined load pattern.

Parameters

lp – load pattern to append.

defineDefaultTimeSeries()

Define the time series to use by default for new load patterns.

defineSimpleLoadCases(names)

Define load patterns with constant time series.

Parameters

names – list of names for the load patterns to define.

exportToCSV(fileName, header=False)
Creates a CSV file with the defined load cases and their

descriptions.

Parameters

fileName – output file name.

exportToLatex(fileName)

Creates LaTeX tables and put the combinations in them.

Parameters

fileName – output file name.

exportToPDF(fileName)

Creates a PDF file and write the combinations to it.

Parameters

fileName – output file name.

getCodesAndDescriptions(header=False)

Return a list with the defined load cases and their descriptions.

Parameters

header – if true put a header in the first row.

getCurrentLoadCase()

Returns current load case.

getDict()

Return a dictionary with the values for the object fields.

getLaTeXCode(small=True)
Return the LaTeX string corresponding to load cases in the

container.

Parameters

small – if true, use small font.

getLoadCase(name)

Return the load case with the give name.

Parameters

name – name of the load case to retrieve.

getLoadCasesNames()

Return the names of the load cases in the container.

getLoadHandler()

Return the preprocessor’s load handler.

getLoadPatterns()

Return the preprocessor’s loads handler container.

newLoadPattern(name, lpType)

Define a load pattern with constant time series.

Parameters
  • name – name for the new load pattern.

  • lpType – type of the new load pattern.

newSimpleLoadPattern(name)

Define a load pattern with constant time series.

Parameters

name – name for the new load pattern.

newTimeSeries(tsName, tsType)

Create the time series for the load case.

Parameters
  • tsName – name for the new time series.

  • tsType – type for the new time series.

setCurrentLoadCase(name, newLoadCase=False)

Sets current load case.

Parameters
  • name – name for the load case to set as current.

  • newLoadCase – if true, create the load case if doesn’t exists.

setFromDict(dct)

Set the fields from the values of the dictionary argument.

Parameters

dct – dictionary containing the field values.

actions.load_cases.get_load_pattern_type_from_class_name(className)

Return the type of the load pattern from the given class name.

Parameters

className – class name.

actions.load_cases.get_time_series_type_from_class_name(className)

Return the type of the time series from the given class name.

Parameters

className – class name.

actions.load_cases.resetAccionesConstantTS(preprocessor, tipoTimeSeries, nmbTimeSeries, fct)

Clear all load patterns in the model and create a new TimeSeries

Parameters
  • tipoTimeSeries – time series type

  • nmbTimeSeries – time series name.

  • fct – Factor

Combinations

combinations.py: manages the container for load combinations.

class actions.combinations.CombContainer

Bases: object

Container of load combinations.

Variables
  • SLS – serviceability limit state combinations.

  • ULS – ultimate limit state combinations.

dumpCombinations(preprocessor)

Introduces the combinations into the XC combination handler.

Parameters

preprocessor – pre-processor for the finite element problem.

exportToCSV(os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)

Write the load combinations as comma separated values.

Parameters

os – output stream.

exportToLatex(fileName)

Creates LaTeX tables and put the combinations in them.

Parameters

fileName – output file name.

exportToPDF(fileName)

Creates a PDF file and write the combinations to it.

Parameters

fileName – output file name.

find(loadCombName: str)

Return the load combination with the given name.

Parameters

loadCombName – name of the load combination to find.

getCorrespondingLoadCombinations(designSituations)
Return the load combinations needed for the design situation

argument.

Parameters

designSituations – design situations that will be checked; i. e. uls_permanent, sls_quasi-permanent, sls_frequent, sls_rare, uls_earthquake, etc.

getDict()

Return a dictionary with the object values.

getLaTeXCode()

Return the LaTeX code correspoding to the combinations in this container.

getList()

Return a list populated with the combinations.

getLoadCaseDispParameters(combName, setsToDispLoads, setsToDispDspRot, setsToDispIntForc)

Returns a suitable LoadCaseDispParameters for the combination.

Parameters
  • combName – name of the combination to create the record for.

  • setsToDispLoads – ordered list of sets of elements to display loads.

  • setsToDispDspRot – ordered list of sets of elements to display displacements.

  • setsToDispIntForc – ordered list of sets of elements to display internal forces.

getNameExpressionPairs()

Return a list of (combinationName, combinationExpression) tuples.

getNames()

returns a list of the combination names.

getNeutralFormat(mapLoadCases)
getStatistics()

Return a dictionary containing the number of load combinations for each limit state.

readFromCSV(inputFileName)

Read the load combinations from a CSV file.

Parameters

inputFileName – name of the input file.

readFromJSON(inputFileName)

Read the load combinations from a JSON file.

Parameters

inputFileName – name of the input file.

renumber(start: int = 0)

Renumber the combinations of this container.

Parameters

start – first index to use.

setFromCSV(rows)

Set the fields from the values of the given rows.

setFromDict(dct)

Set the fields from the values of the given dictionary.

writeJSON(outputFileName)

Write the load combinations in a JSON file.

Parameters

outputFileName – name for the output file.

writePythonScript(containerName='combContainer', os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)

Write a Python script that can be used to re-create this object.

Parameters
  • prefix – string defining the container where the combination will be added.

  • os – output stream.

class actions.combinations.CombinationRecord(name, expr)

Bases: object

Combination name and expression (i.e. ELS01= 1.0*G+1.0*Q)

Variables
  • name – combination name (i.e. “ELS01”).

  • expr – expresion of the load combination (i.e. 1.0*G+1.0*Q).

createCombination(xcCombHandler)

Create combination and insert it into the XC combination handler.

Parameters

xcCombHandler – combination handler.

exportToLatex(outputFile)

Creates LaTeX tables and put the combinations in them.

Parameters

outputFile – file to write into.

getDict()

Return a dictionary with the object values.

getLaTeXCode()

Return the LaTeX string corresponding to this combination.

getLoadCaseDispParameters(setsToDispLoads, setsToDispDspRot, setsToDispIntForc, unitsScaleForc=0.001, unitsScaleMom=0.001, unitsScaleDisp=1000.0, unitsDispl='[mm]')

Return a suitable LoadCaseDispParameters for the combination.

Parameters
  • setsToDispLoads – ordered list of sets of elements to display loads.

  • setsToDispDspRot – ordered list of sets of elements to display displacements.

  • setsToDispIntForc – ordered list of sets of elements to display internal forces.

  • unitsScaleForc – factor to apply to internal forces if we want to change the units (defaults to 1e-3).

  • unitsScaleMom – factor to apply to internal moments if we want to change the units (defaults to 1e-3).

  • unitsScaleDispl – factor to apply to displacements if we want to change the units (defaults to 1e3).

  • unitsDispl – text to especify the units in which displacements are represented (defaults to ‘[mm]’

getNameExpressionPair()

Return a (combinationName, combinationExpression) tuple.

setFromDict(dct)

Set the fields from the values of the dictionary argument.

splitExpr(actions)
Split the expression in two parts: the first one containing the

given actions and the second one with the rest of the load combination.

Parameters

actions – names of the actions to be extracted to the first part.

writePythonScript(prefix, os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)

Write a Python script that can be used to re-create this object.

Parameters
  • prefix – string defining the container where the combination will be added.

  • os – output stream.

class actions.combinations.SLSCombinations

Bases: actions.combinations.SituationsSet

Combinations of actions for serviceability limit states

Variables
  • rare – combination for a rare design situation

  • freq – combination for a frequent design situation

  • qp – combination for a quasi-permanent design situation

  • earthquake – combination for a earthquake design situation

find(loadCombName: str)

Return the load combination with the given name.

Parameters

loadCombName – name of the load combination to find.

getDict()

Return a dictionary with the object values.

getNeutralFormat(counter, mapLoadCases)
getStatistics()

Return a dictionary containing the number of load combinations for each situation.

renumber(start: int = 0)

Renumber the combinations of this container.

Parameters

start – first index to use.

setFromCSV(rows)

Set the fields from the values of the given rows.

setFromDict(dct)

Set the fields from the values of the dictionary argument.

writePythonScript(prefix, os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)

Write a Python script that can be used to re-create this object.

Parameters
  • prefix – string defining the container where the combination will be added.

  • os – output stream.

class actions.combinations.SituationCombs(desc: str)

Bases: dict

Dictionary of combinations for a situation (frequent, rare,

persistent,…).

Variables

description – short description of the situation.

add(name, expr)

Add a combination to the dictionary.

Parameters
  • name – combination name (i.e. “ELS01”).

  • expr – expresion of the load combination (i.e. 1.0*G+1.0*Q).

dumpCombinations(xcCombHandler)

Introduces the combinations into the XC combination handler.

Parameters

xcCombHandler – combination handler.

exportToLatex(outputFile, limitState=None)

Creates LaTeX tables and put the combinations in them.

Parameters
  • outputFile – file to write into.

  • limitState – description of the limit state to which this situation corresponds.

find(loadCombName: str)

Return the load combination with the given name.

Parameters

loadCombName – name of the load combination to find.

getDict()

Return a dictionary with the object values.

getLaTeXCode(limitState=None, small=True)

Creates LaTeX tables and put the combinations in them.

Parameters
  • outputFile – file to write into.

  • limitState – description of the limit state to which this situation corresponds.

  • small – if true, use small font.

getLoadCaseDispParameters(combName, setsToDispLoads, setsToDispDspRot, setsToDispIntForc)

Returns a suitable LoadCaseDispParameters for the combination.

Parameters
  • combName – name of the combination to create the record for.

  • setsToDispLoads – ordered list of sets of elements to display loads.

  • setsToDispDspRot – ordered list of sets of elements to display displacements.

  • setsToDispIntForc – ordered list of sets of elements to display internal forces.

getNameExpressionPairs()

Return a list of (combinationName, combinationExpression) tuples.

getNames()

returns a list of the combination names.

getNeutralFormat(counter, typ, mapLoadCases)
getStatistics()

Return a dictionary containing the number of load combinations in this container.

renumber(prefix: str = '', start: int = 0)

Renumber the combinations of this container.

Parameters
  • prefix – prefix to use for the new combination name.

  • start – first index to use.

setFromCSV(rows)

Set the fields from the values of the given rows.

setFromDict(dct)

Set the fields from the values of the dictionary argument.

writeJSON(outputFileName)

Write the load combinations in a JSON file.

Parameters

outputFileName – name for the output file.

writePythonScript(prefix, os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)

Write a Python script that can be used to re-create this object.

Parameters
  • prefix – string defining the container where the combination will be added.

  • os – output stream.

class actions.combinations.SituationsSet(name: str)

Bases: object

Set of situations as used in limit states

Variables
  • name – name to identify the situation set

  • situations – set of situations

dumpCombinations(xcCombHandler)

Introduces the combinations into the XC combination handler.

Parameters

xcCombHandler – combination handler.

exportToLatex(outputFile)

Creates LaTeX tables and put the combinations in them.

getDict()

Return a dictionary with the object values.

getLaTeXCode()

Return the LaTeX code corresponding to the combinations in this container.

getLoadCaseDispParameters(combName, setsToDispLoads, setsToDispDspRot, setsToDispIntForc)

Returns a suitable LoadCaseDispParameters for the combination.

Parameters
  • combName – name of the combination to create the record for.

  • setsToDispLoads – ordered list of sets of elements to display loads.

  • setsToDispDspRot – ordered list of sets of elements to display displacements.

  • setsToDispIntForc – ordered list of sets of elements to display internal forces.

getNameExpressionPairs()

Return a list of (combinationName, combinationExpression) tuples.

getNames()

returns a list of the combination names.

getStatistics()

Return a dictionary containing the number of load combinations for each limit state.

setFromDict(dct)

Set the fields from the values of the dictionary argument.

writeJSON(outputFileName)

Write the load combinations in a JSON file.

Parameters

outputFileName – name for the output file.

class actions.combinations.ULSCombinations

Bases: actions.combinations.SituationsSet

Combinations of actions for ultimate limit states

Variables
  • name – name to identify the limit state (ultimate,…)

  • perm – combination for a persistent or transient design situation

  • acc – combination for a accidental design situation

  • fatigue – combination for a fatigue design situation

  • earthquake – combination for a seismic design situation

find(loadCombName: str)

Return the load combination with the given name.

Parameters

loadCombName – name of the load combination to find.

getDict()

Return a dictionary with the object values.

getNeutralFormat(counter, mapLoadCases)
getStatistics()

Return a dictionary containing the number of load combinations for each situation.

renumber(start: int = 0)

Renumber the combinations of this container.

Parameters

start – first index to use.

setFromCSV(rows)

Set the fields from the values of the given rows.

setFromDict(dct)

Set the fields from the values of the dictionary argument.

writePythonScript(prefix, os=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)

Write a Python script that can be used to re-create this object.

Parameters
  • prefix – string defining the container where the combination will be added.

  • os – output stream.